These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32126474)

  • 21. Multi-MHz micro-electro-mechanical sensors for atomic force microscopy.
    Legrand B; Salvetat JP; Walter B; Faucher M; Théron D; Aimé JP
    Ultramicroscopy; 2017 Apr; 175():46-57. PubMed ID: 28110263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.
    Benaglia S; Gisbert VG; Perrino AP; Amo CA; Garcia R
    Nat Protoc; 2018 Dec; 13(12):2890-2907. PubMed ID: 30446750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements.
    Hemeda AA; Pal S; Mishra A; Torabi M; Ahmadlouydarab M; Li Z; Palko J; Ma Y
    Langmuir; 2019 Oct; 35(41):13301-13310. PubMed ID: 31536702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing higher-order eigenmodes of AFM using bridge/cantilever coupled system.
    Dou Z; Qian J; Li Y; Lin R; Wang T; Wang J; Cheng P; Xu Z
    Micron; 2021 Nov; 150():103147. PubMed ID: 34534920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach.
    Cruz Valeriano E; Gervacio Arciniega JJ; Enriquez Flores CI; Meraz Dávila S; Moreno Palmerin J; Hernández Landaverde MA; Chipatecua Godoy YL; Gutiérrez Peralta AM; Ramírez Bon R; Yañez Limón JM
    Beilstein J Nanotechnol; 2020; 11():703-716. PubMed ID: 32461872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies.
    Stan G; Solares SD
    Beilstein J Nanotechnol; 2014; 5():278-88. PubMed ID: 24778949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometric parameters effect of the atomic force microscopy smart piezoelectric cantilever on the different rough surface topography quality by considering the capillary force.
    Habibnejad Korayem A; Taghizadeh M; Habibnejad Korayem M
    Microsc Res Tech; 2019 May; 82(5):517-529. PubMed ID: 30589133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid mode atomic force microscopy of phase modulation and frequency modulation.
    Yamamoto T; Miyazaki M; Nomura H; Li YJ; Sugawara Y
    Microscopy (Oxf); 2023 Jun; 72(3):236-242. PubMed ID: 36322406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy.
    Heinze K; Arnould O; Delenne JY; Lullien-Pellerin V; Ramonda M; George M
    Ultramicroscopy; 2018 Nov; 194():78-88. PubMed ID: 30092392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.
    Çelik Ü; Karcı Ö; Uysallı Y; Özer HÖ; Oral A
    Rev Sci Instrum; 2017 Jan; 88(1):013705. PubMed ID: 28147654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing phase contrast for bimodal AFM imaging in low quality factor environments.
    Damircheli M; Eslami B
    Ultramicroscopy; 2019 Sep; 204():18-26. PubMed ID: 31112833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subsurface phase imaging of tapping-mode atomic force microscopy at phase resonance.
    Sun B; Cao L; Xie C; Lu Z; Liu M; Yu M; Song Z; Wen Z; Wang Z
    J Microsc; 2022 Sep; 287(3):148-155. PubMed ID: 35789488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning Probe Microscopy Facility for Operando Study of Redox Processes on Lithium ion Battery Electrodes.
    Legerstee WJ; Boekel M; Boonstra S; Kelder EM
    Front Chem; 2021; 9():505876. PubMed ID: 33937182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Case Report: Bayesian Statistical Inference of Experimental Parameters via Biomolecular Simulations: Atomic Force Microscopy.
    Fuchigami S; Niina T; Takada S
    Front Mol Biosci; 2021; 8():636940. PubMed ID: 33778008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of eccentric nanoneedle in trolling-mode atomic force microscope.
    Chahari M; Sajjadi M
    Microsc Res Tech; 2021 Apr; 84(4):639-655. PubMed ID: 33169475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis.
    Uluutku B; Solares SD
    Beilstein J Nanotechnol; 2020; 11():453-465. PubMed ID: 32215233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different directional energy dissipation of heterogeneous polymers in bimodal atomic force microscopy.
    Tan X; Guo D; Luo J
    RSC Adv; 2019 Aug; 9(47):27464-27474. PubMed ID: 35529235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.