These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32126486)

  • 1. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations.
    Gajda I; Obata O; Jose Salar-Garcia M; Greenman J; Ieropoulos IA
    Bioelectrochemistry; 2020 Jun; 133():107459. PubMed ID: 32126486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of ceramic MFC stacks for urine energy extraction.
    Tremouli A; Greenman J; Ieropoulos I
    Bioelectrochemistry; 2018 Oct; 123():19-25. PubMed ID: 29719273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste to real energy: the first MFC powered mobile phone.
    Ieropoulos IA; Ledezma P; Stinchcombe A; Papaharalabos G; Melhuish C; Greenman J
    Phys Chem Chem Phys; 2013 Oct; 15(37):15312-6. PubMed ID: 23939246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development.
    Gajda I; Stinchcombe A; Merino-Jimenez I; Pasternak G; Sanchez-Herranz D; Greenman J; Ieropoulos IA
    Front Energy Res; 2018 Oct; 6():84. PubMed ID: 33409273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.
    Pasternak G; Greenman J; Ieropoulos I
    ChemSusChem; 2016 Jan; 9(1):88-96. PubMed ID: 26692569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.
    Estrada-Arriaga EB; Guillen-Alonso Y; Morales-Morales C; García-Sánchez L; Bahena-Bahena EO; Guadarrama-Pérez O; Loyola-Morales F
    Water Sci Technol; 2017 Jul; 76(3-4):683-693. PubMed ID: 28759450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cell treatment energy-offset for fertilizer production from human urine.
    Sabin JM; Leverenz H; Bischel HN
    Chemosphere; 2022 May; 294():133594. PubMed ID: 35031247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions.
    Ledezma P; Greenman J; Ieropoulos I
    Bioresour Technol; 2013 Apr; 134():158-65. PubMed ID: 23500573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of clayware ceramic separator modified with silica in microbial fuel cell for bioelectricity generation during rice mill wastewater treatment.
    Raychaudhuri A; Sahoo RN; Behera M
    Water Sci Technol; 2021 Jul; 84(1):66-76. PubMed ID: 34280155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalability and stacking of self-stratifying microbial fuel cells treating urine.
    Walter XA; Santoro C; Greenman J; Ieropoulos IA
    Bioelectrochemistry; 2020 Jun; 133():107491. PubMed ID: 32163891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant.
    He W; Wallack MJ; Kim KY; Zhang X; Yang W; Zhu X; Feng Y; Logan BE
    Water Res; 2016 Nov; 105():351-360. PubMed ID: 27639344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials.
    Huang S; Zhang J; Pi J; Gong L; Zhu G
    Bioelectrochemistry; 2021 Aug; 140():107748. PubMed ID: 33609890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column.
    Walter XA; Gajda I; Forbes S; Winfield J; Greenman J; Ieropoulos I
    Biotechnol Biofuels; 2016; 9():93. PubMed ID: 27168763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent load implementation in microbial fuel cells improves power performance.
    Walter XA; Greenman J; Ieropoulos IA
    Bioresour Technol; 2014 Nov; 172():365-372. PubMed ID: 25280044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of power generation in microbial fuel cells of two different structures].
    Luo HP; Liu GL; Zhang RD; Jin S
    Huan Jing Ke Xue; 2009 Feb; 30(2):621-4. PubMed ID: 19402526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA).
    An J; Kim B; Jang JK; Lee HS; Chang IS
    Biosens Bioelectron; 2014 Sep; 59():28-34. PubMed ID: 24690558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review.
    James A
    Environ Res; 2022 Jul; 210():112963. PubMed ID: 35217013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.