These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32126543)

  • 1. CO
    Wu J; Snustad I; Ervik Å; Brunsvold A; He J; Zhang Z
    Nanotechnology; 2020 Mar; 31(24):245403. PubMed ID: 32126543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study.
    Gao S; Liao Q; Liu W; Liu Z
    Langmuir; 2017 Oct; 33(43):12379-12388. PubMed ID: 28980811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations.
    Guan C; Lv X; Han Z; Chen C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condensation of droplets on nanopillared hydrophobic substrates.
    Guo Q; Liu Y; Jiang G; Zhang X
    Soft Matter; 2014 Feb; 10(8):1182-8. PubMed ID: 24652083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Yin Y; Zhao L; Lin S
    Langmuir; 2023 Dec; 39(49):17818-17829. PubMed ID: 38039439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces.
    Lundgren M; Allan NL; Cosgrove T
    Langmuir; 2007 Jan; 23(3):1187-94. PubMed ID: 17241031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained.
    Rohrs C; Azimi A; He P
    Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study.
    Wang J; Chen S; Chen D
    Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.
    Shi S; Lv C; Zheng Q
    Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet impact on pillar-arrayed non-wetting surfaces.
    Wang LZ; Zhou A; Zhou JZ; Chen L; Yu YS
    Soft Matter; 2021 Jun; 17(24):5932-5940. PubMed ID: 34041518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale.
    Zhao YP; Yuan Q
    Nanoscale; 2015 Feb; 7(6):2561-7. PubMed ID: 25578630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.