These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 32126768)
1. Full-Featured, Real-Time Database Searching Platform Enables Fast and Accurate Multiplexed Quantitative Proteomics. Schweppe DK; Eng JK; Yu Q; Bailey D; Rad R; Navarrete-Perea J; Huttlin EL; Erickson BK; Paulo JA; Gygi SP J Proteome Res; 2020 May; 19(5):2026-2034. PubMed ID: 32126768 [TBL] [Abstract][Full Text] [Related]
2. Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows. Erickson BK; Mintseris J; Schweppe DK; Navarrete-Perea J; Erickson AR; Nusinow DP; Paulo JA; Gygi SP J Proteome Res; 2019 Mar; 18(3):1299-1306. PubMed ID: 30658528 [TBL] [Abstract][Full Text] [Related]
3. Comparison of MS Fu Q; Liu Z; Bhawal R; Anderson ET; Sherwood RW; Yang Y; Thannhauser T; Schroyen M; Tang X; Zhang H; Zhang S Anal Bioanal Chem; 2021 Jan; 413(2):419-429. PubMed ID: 33099676 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Search-Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage in Multiplexed Single-Cell Proteomics. Furtwängler B; Üresin N; Motamedchaboki K; Huguet R; Lopez-Ferrer D; Zabrouskov V; Porse BT; Schoof EM Mol Cell Proteomics; 2022 Apr; 21(4):100219. PubMed ID: 35219906 [TBL] [Abstract][Full Text] [Related]
5. TMTpro Complementary Ion Quantification Increases Plexing and Sensitivity for Accurate Multiplexed Proteomics at the MS2 Level. Johnson A; Stadlmeier M; Wühr M J Proteome Res; 2021 Jun; 20(6):3043-3052. PubMed ID: 33929851 [TBL] [Abstract][Full Text] [Related]
6. HYpro16: A Two-Proteome Mixture to Assess Interference in Isobaric Tag-Based Sample Multiplexing Experiments. Navarrete-Perea J; Gygi SP; Paulo JA J Am Soc Mass Spectrom; 2021 Jan; 32(1):247-254. PubMed ID: 33175540 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Spectral Library Matching for Sample Multiplexed Quantitative Proteomics. McGann CD; Barshop WD; Canterbury JD; Lin C; Gabriel W; Huang J; Bergen D; Zabrouskov V; Melani RD; Wilhelm M; McAlister GC; Schweppe DK J Proteome Res; 2023 Sep; 22(9):2836-2846. PubMed ID: 37557900 [TBL] [Abstract][Full Text] [Related]
8. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. McAlister GC; Nusinow DP; Jedrychowski MP; Wühr M; Huttlin EL; Erickson BK; Rad R; Haas W; Gygi SP Anal Chem; 2014 Jul; 86(14):7150-8. PubMed ID: 24927332 [TBL] [Abstract][Full Text] [Related]
9. Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer. Erickson BK; Jedrychowski MP; McAlister GC; Everley RA; Kunz R; Gygi SP Anal Chem; 2015 Jan; 87(2):1241-9. PubMed ID: 25521595 [TBL] [Abstract][Full Text] [Related]
10. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Kreuzer J; Edwards A; Haas W Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085 [TBL] [Abstract][Full Text] [Related]
12. A framework for intelligent data acquisition and real-time database searching for shotgun proteomics. Graumann J; Scheltema RA; Zhang Y; Cox J; Mann M Mol Cell Proteomics; 2012 Mar; 11(3):M111.013185. PubMed ID: 22171319 [TBL] [Abstract][Full Text] [Related]
13. Increasing the Throughput and Reproducibility of Activity-Based Proteome Profiling Studies with Hyperplexing and Intelligent Data Acquisition. Budayeva HG; Ma TP; Wang S; Choi M; Rose CM J Proteome Res; 2024 Aug; 23(8):2934-2947. PubMed ID: 38251652 [TBL] [Abstract][Full Text] [Related]
14. A streamlined pipeline for multiplexed quantitative site-specific N-glycoproteomics. Fang P; Ji Y; Silbern I; Doebele C; Ninov M; Lenz C; Oellerich T; Pan KT; Urlaub H Nat Commun; 2020 Oct; 11(1):5268. PubMed ID: 33077710 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Linear Ion Trap for MS3-Based Multiplexed Single-Cell Proteomics. Park J; Yu F; Fulcher JM; Williams SM; Engbrecht K; Moore RJ; Clair GC; Petyuk V; Nesvizhskii AI; Zhu Y Anal Chem; 2023 Jan; ():. PubMed ID: 36637389 [TBL] [Abstract][Full Text] [Related]
16. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments. Paulo JA; O'Connell JD; Gygi SP J Am Soc Mass Spectrom; 2016 Oct; 27(10):1620-5. PubMed ID: 27400695 [TBL] [Abstract][Full Text] [Related]
17. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. Muntel J; Kirkpatrick J; Bruderer R; Huang T; Vitek O; Ori A; Reiter L J Proteome Res; 2019 Mar; 18(3):1340-1351. PubMed ID: 30726097 [TBL] [Abstract][Full Text] [Related]
20. Spectral Library Search Improves Assignment of TMT Labeled MS/MS Spectra. Shen J; Pagala VR; Breuer AM; Peng J; Bin Ma ; Wang X J Proteome Res; 2018 Sep; 17(9):3325-3331. PubMed ID: 30096983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]