BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32127240)

  • 1. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems.
    García-Galán MJ; Arashiro L; Santos LHMLM; Insa S; Rodríguez-Mozaz S; Barceló D; Ferrer I; Garfí M
    J Hazard Mater; 2020 May; 390():121771. PubMed ID: 32127240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes.
    Villar-Navarro E; Baena-Nogueras RM; Paniw M; Perales JA; Lara-Martín PA
    Water Res; 2018 Aug; 139():19-29. PubMed ID: 29621714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.
    de Wilt A; Butkovskyi A; Tuantet K; Leal LH; Fernandes TV; Langenhoff A; Zeeman G
    J Hazard Mater; 2016 Mar; 304():84-92. PubMed ID: 26546707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of pharmaceutical compounds from the liquid phase of anaerobic sludge in a pilot-scale high-rate algae-bacteria pond.
    Mantovani M; Rossi S; Ficara E; Collina E; Marazzi F; Lasagni M; Mezzanotte V
    Sci Total Environ; 2024 Jan; 908():167881. PubMed ID: 37865249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.
    Matamoros V; Gutiérrez R; Ferrer I; García J; Bayona JM
    J Hazard Mater; 2015 May; 288():34-42. PubMed ID: 25682515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds.
    Hom-Diaz A; Norvill ZN; Blánquez P; Vicent T; Guieysse B
    Chemosphere; 2017 Aug; 180():33-41. PubMed ID: 28391150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model.
    Solimeno A; García J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1818-1831. PubMed ID: 30286350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater.
    Lindberg RH; Namazkar S; Lage S; Östman M; Gojkovic Z; Funk C; Gentili FG; Tysklind M
    Chemosphere; 2021 May; 271():129763. PubMed ID: 33736225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds.
    Norvill ZN; Toledo-Cervantes A; Blanco S; Shilton A; Guieysse B; Muñoz R
    Bioresour Technol; 2017 May; 232():35-43. PubMed ID: 28214443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater.
    Lucas D; Castellet-Rovira F; Villagrasa M; Badia-Fabregat M; Barceló D; Vicent T; Caminal G; Sarrà M; Rodríguez-Mozaz S
    Sci Total Environ; 2018 Jan; 610-611():1147-1153. PubMed ID: 28847135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS).
    Leong YK; Huang CY; Chang JS
    J Environ Manage; 2021 Oct; 296():113193. PubMed ID: 34237671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Case study on the effect continuous CO
    Young P; Taylor MJ; Buchanan N; Lewis J; Fallowfield HJ
    J Environ Manage; 2019 Dec; 251():109614. PubMed ID: 31563600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetracycline removal during wastewater treatment in high-rate algal ponds.
    de Godos I; Muñoz R; Guieysse B
    J Hazard Mater; 2012 Aug; 229-230():446-9. PubMed ID: 22727483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying filamentous algae nutrient scrubbers for improved wastewater treatment and harvestability - comparison with microalgae.
    Sutherland DL; Burke J
    J Environ Manage; 2023 Dec; 348():119339. PubMed ID: 37883837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.
    de Wilt A; van Gijn K; Verhoek T; Vergnes A; Hoek M; Rijnaarts H; Langenhoff A
    Water Res; 2018 Jul; 138():97-105. PubMed ID: 29574201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cultivation conditions on β-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater.
    Parladé E; Hom-Diaz A; Blánquez P; Martínez-Alonso M; Vicent T; Gaju N
    Water Res; 2018 Jun; 137():86-96. PubMed ID: 29544206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems.
    Larsen C; Yu ZH; Flick R; Passeport E
    Sci Total Environ; 2019 Dec; 695():133772. PubMed ID: 31425979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Northern green algae have the capacity to remove active pharmaceutical ingredients.
    Gojkovic Z; Lindberg RH; Tysklind M; Funk C
    Ecotoxicol Environ Saf; 2019 Apr; 170():644-656. PubMed ID: 30579165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.