These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32127536)

  • 21. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting grain rotation at the nanoscale.
    Chen B; Lutker K; Lei J; Yan J; Yang S; Mao HK
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3350-3. PubMed ID: 24550455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size effects of lamellar twins on the strength and deformation mechanisms of nanocrystalline hcp cobalt.
    Wang W; Yuan F; Jiang P; Wu X
    Sci Rep; 2017 Aug; 7(1):9550. PubMed ID: 28842648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading.
    Luo XM; Zhu XF; Zhang GP
    Nat Commun; 2014; 5():3021. PubMed ID: 24389459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure evolution and the deformation mechanism in nanocrystalline superior-deformed tantalum.
    Li P; Wang A; Qi M; Zhao C; Li Z; Zhanhong W; Koval V; Yan H
    Nanoscale; 2024 Feb; 16(9):4826-4840. PubMed ID: 38312054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
    Zhang F; Feng X; Yang Z; Kang J; Wang T
    Sci Rep; 2015 Mar; 5():8981. PubMed ID: 25757550
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Li D; Wang Z; Zhao Y; Zeng W; Zhang Z; Li S; Lian H; Yang C; Ma Y; Fu L; Guo Y; Zhang Z; Zhai Y; Mao S; Wang L; Han X
    ACS Nano; 2023 Dec; 17(23):23488-23497. PubMed ID: 38010413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.
    Lu N; Du K; Lu L; Ye HQ
    Nat Commun; 2015 Jul; 6():7648. PubMed ID: 26179409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A jogged dislocation governed strengthening mechanism in nanotwinned metals.
    Zhou H; Li X; Qu S; Yang W; Gao H
    Nano Lett; 2014 Sep; 14(9):5075-80. PubMed ID: 25133875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni-Fe.
    Schäfer J; Albe K
    Beilstein J Nanotechnol; 2013; 4():542-53. PubMed ID: 24205450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ observation of twin-assisted grain growth in nanometer-scaled metal.
    He S; Wang C; Qi L; Ye H; Du K
    Micron; 2020 Apr; 131():102825. PubMed ID: 31951939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Temperature on Deformation and Fracture Behaviour of Nanostructured Polycrystalline Ni Under Tensile Hydrostatic Stress by Molecular Dynamics Simulation.
    Pei L; Lu C; Tang Q; Zhang Y; Li J; Zhang C; Zhao X; Tieu K
    J Nanosci Nanotechnol; 2019 May; 19(5):2723-2731. PubMed ID: 30501772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.