BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 32127698)

  • 1. Sensing of tubular flow and renal electrolyte transport.
    Verschuren EHJ; Castenmiller C; Peters DJM; Arjona FJ; Bindels RJM; Hoenderop JGJ
    Nat Rev Nephrol; 2020 Jun; 16(6):337-351. PubMed ID: 32127698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD.
    Verschuren EHJ; Mohammed SG; Leonhard WN; Overmars-Bos C; Veraar K; Hoenderop JGJ; Bindels RJM; Peters DJM; Arjona FJ
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F537-F546. PubMed ID: 29767557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical rationalization for the renal tubular transport: revised concepts.
    Mioni R; Marega A; Romano G; Montanaro D
    Scand J Clin Lab Invest; 2017 Sep; 77(5):358-372. PubMed ID: 28598689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional adaptation to reduction in renal mass.
    Hayslett JP
    Physiol Rev; 1979 Jan; 59(1):137-64. PubMed ID: 220646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal tubular action of prostaglandin E2 on water and electrolyte excretion in the nonanesthetized chicken.
    Besseghir K
    J Pharmacol Exp Ther; 1985 Jun; 233(3):823-9. PubMed ID: 3859645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubule-vascular feedback in renal autoregulation.
    Romero CA; Carretero OA
    Am J Physiol Renal Physiol; 2019 Jun; 316(6):F1218-F1226. PubMed ID: 30838873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glomerular and tubular effects of nitric oxide (NO) are regulated by angiotensin II (Ang II) in an age-dependent manner through activation of both angiotensin receptors (AT1Rs and AT2Rs) in conscious lambs.
    Vinturache AE; Smith FG
    Pflugers Arch; 2018 Feb; 470(2):249-261. PubMed ID: 28861607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kidneys sans glomeruli.
    Beyenbach KW
    Am J Physiol Renal Physiol; 2004 May; 286(5):F811-27. PubMed ID: 15075177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrarenal purinergic signaling in the control of renal tubular transport.
    Praetorius HA; Leipziger J
    Annu Rev Physiol; 2010; 72():377-93. PubMed ID: 20148681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney.
    de Rouffignac C; Corman B; Roinel N
    Am J Physiol; 1983 Feb; 244(2):F156-64. PubMed ID: 6824079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purinergic regulation of glomerular microvasculature and tubular function.
    Jankowski M
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 9():121-35. PubMed ID: 19261976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubular handling of fluid and electrolytes during ovine pregnancy.
    Cha SC; Aberdeen GW; Mukaddam-Daher S; Quillen EW; Nuwayhid BS
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F278-84. PubMed ID: 8368336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physiology and pathophysiology of tubular transport of solutes and water].
    Sekine T
    Nihon Jinzo Gakkai Shi; 2008; 50(8):974-82. PubMed ID: 19172799
    [No Abstract]   [Full Text] [Related]  

  • 15. [Investigation of tubular reabsorption of phosphates in patients with chronic kidney disease].
    Horáčková M; Schück O; Sotorník I; Franková J; Štollová M; Látová I; Malinská H; Urbanová J
    Vnitr Lek; 2015 Dec; 61(12):1034-8. PubMed ID: 26806498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glycine on glomerular filtration rate and segmental tubular handling of sodium in conscious rats.
    Thomsen K; Nielsen CB; Flyvbjerg A
    Clin Exp Pharmacol Physiol; 2002; 29(5-6):449-54. PubMed ID: 12010191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control of renal tubular sodium reabsorption in the rat: single nephron analysis.
    Colindres RE; Gottschalk CW
    Fed Proc; 1978 Apr; 37(5):1218-21. PubMed ID: 640002
    [No Abstract]   [Full Text] [Related]  

  • 18. Renal tubular solute transport and oxygen consumption: insights from computational models.
    Layton AT; Vallon V
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):384-389. PubMed ID: 30016311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distal tubular function in superficial rat tubules during volume expansion.
    Diezi J; Nenniger M; Giebisch G
    Am J Physiol; 1980 Sep; 239(3):F228-32. PubMed ID: 7435562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of renal nerve activity on tubular sodium and water reabsorption in dog kidneys as determined by the lithium clearance method.
    Abildgaard U; Holstein-Rathlou NH; Leyssac PP
    Acta Physiol Scand; 1986 Feb; 126(2):251-7. PubMed ID: 3705985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.