These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32128577)

  • 21. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1.
    Hirano R; Ehara H; Kujirai T; Uejima T; Takizawa Y; Sekine SI; Kurumizaka H
    Nat Commun; 2022 Nov; 13(1):7287. PubMed ID: 36435862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The proto-chromatosome: A fundamental subunit of chromatin?
    Ocampo J; Cui F; Zhurkin VB; Clark DJ
    Nucleus; 2016 Jul; 7(4):382-7. PubMed ID: 27645053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contacts of the globular domain of histone H5 and core histones with DNA in a "chromatosome".
    Hayes JJ; Pruss D; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7817-21. PubMed ID: 8052665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular modeling of the chromatosome particle.
    Bharath MM; Chandra NR; Rao MR
    Nucleic Acids Res; 2003 Jul; 31(14):4264-74. PubMed ID: 12853645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Docking data of selected human linker histone variants to the nucleosome.
    de Wit H; Koorsen G
    Data Brief; 2020 Jun; 30():105580. PubMed ID: 32337329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging roles of linker histones in regulating chromatin structure and function.
    Fyodorov DV; Zhou BR; Skoultchi AI; Bai Y
    Nat Rev Mol Cell Biol; 2018 Mar; 19(3):192-206. PubMed ID: 29018282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
    Perišić O; Portillo-Ledesma S; Schlick T
    Nucleic Acids Res; 2019 Jun; 47(10):4948-4957. PubMed ID: 30968131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome.
    Syed SH; Goutte-Gattat D; Becker N; Meyer S; Shukla MS; Hayes JJ; Everaers R; Angelov D; Bednar J; Dimitrov S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9620-5. PubMed ID: 20457934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.
    Shaytan AK; Armeev GA; Goncearenco A; Zhurkin VB; Landsman D; Panchenko AR
    J Mol Biol; 2016 Jan; 428(1):221-237. PubMed ID: 26699921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanism of histone variant H2A.B on stability and assembly of nucleosome and chromatin structures.
    Peng J; Yuan C; Hua X; Zhang Z
    Epigenetics Chromatin; 2020 Jul; 13(1):28. PubMed ID: 32664941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward an Ensemble View of Chromatosome Structure: A Paradigm Shift from One to Many.
    Öztürk MA; Cojocaru V; Wade RC
    Structure; 2018 Aug; 26(8):1050-1057. PubMed ID: 29937356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of linker histone in chromatosomes by cryo-atomic force microscopy.
    Sheng S; Czajkowsky DM; Shao Z
    Biophys J; 2006 Aug; 91(4):L35-7. PubMed ID: 16782797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computation of FRAP recovery times for linker histone - chromatin binding on the basis of Brownian dynamics simulations.
    Öztürk MA; Wade RC
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129653. PubMed ID: 32512172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction of histone H5 and its globular domain with core particles, depleted chromatosomes, polynucleosomes, and a DNA decamer.
    Segers A; Muyldermans S; Wyns L
    J Biol Chem; 1991 Jan; 266(3):1502-8. PubMed ID: 1988433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations.
    Chang L; Takada S
    Sci Rep; 2016 Oct; 6():34441. PubMed ID: 27698366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.