These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32128962)

  • 1. Semi-Rationally Designed Short Peptides Self-Assemble and Bind Hemin to Promote Cyclopropanation.
    Zozulia O; Korendovych IV
    Angew Chem Int Ed Engl; 2020 May; 59(21):8108-8112. PubMed ID: 32128962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation.
    Dolan MA; Basa PN; Zozulia O; Lengyel Z; Lebl R; Kohn EM; Bhattacharya S; Korendovych IV
    ACS Nano; 2019 Aug; 13(8):9292-9297. PubMed ID: 31314486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity.
    Zozulia O; Marshall LR; Kim I; Kohn EM; Korendovych IV
    Chemistry; 2021 Mar; 27(17):5388-5392. PubMed ID: 33460473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins.
    Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH
    Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Luo W; Noguchi H; Chen C; Nakamura Y; Homma C; Zozulia O; Korendovych IV; Hayamizu Y
    Nanoscale; 2022 Jun; 14(23):8326-8331. PubMed ID: 35661853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular co-assembly of multicomponent peptides for the generation of nanomaterials with improved peroxidase activities.
    Zhang Y; Li X
    J Mater Chem B; 2023 May; 11(17):3898-3906. PubMed ID: 37039513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules.
    Geng R; Chang R; Zou Q; Shen G; Jiao T; Yan X
    Small; 2021 May; 17(19):e2008114. PubMed ID: 33760401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expedient synthesis of cyclopropane alpha-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate.
    Moreau B; Charette AB
    J Am Chem Soc; 2005 Dec; 127(51):18014-5. PubMed ID: 16366547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Screening of Catalytic Amyloid Assemblies.
    Lengyel Z; Rufo CM; Korendovych IV
    Methods Mol Biol; 2018; 1777():261-270. PubMed ID: 29744841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal (Dis)Assembly of Peptide Nanostructures Dictated by Native Multistep Catalytic Transformations.
    Pal S; Saha B; Das D
    Nano Lett; 2024 Feb; 24(7):2250-2256. PubMed ID: 38329289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex.
    Teng Q; Wu H; Sun H; Liu Y; Wang H; Wang ZG
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):1004-1011. PubMed ID: 35970126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening rhodium metallopeptide libraries "on bead": asymmetric cyclopropanation and a solution to the enantiomer problem.
    Sambasivan R; Ball ZT
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8568-72. PubMed ID: 22777868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.
    Sambasivan R; Ball ZT
    Chirality; 2013 Sep; 25(9):493-7. PubMed ID: 23749505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.
    Bordeaux M; Tyagi V; Fasan R
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1744-8. PubMed ID: 25538035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Nanostructures by Peptides.
    Pachahara SK; Subbalakshmi C; Nagaraj R
    Curr Protein Pept Sci; 2017; 18(9):920-938. PubMed ID: 27455966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity.
    Liu Q; Wang H; Shi X; Wang ZG; Ding B
    ACS Nano; 2017 Jul; 11(7):7251-7258. PubMed ID: 28657711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enantioselective synthesis of cyclopropylamine derivatives via Ru(II)-pheox-catalyzed direct asymmetric cyclopropanation of vinylcarbamates.
    Chanthamath S; Nguyen DT; Shibatomi K; Iwasa S
    Org Lett; 2013 Feb; 15(4):772-5. PubMed ID: 23360582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced
    Suzuki K; Shisaka Y; Stanfield JK; Watanabe Y; Shoji O
    Chem Commun (Camb); 2020 Sep; 56(75):11026-11029. PubMed ID: 32895681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric cyclopropanation of conjugated cyanosulfones using a novel cupreine organocatalyst: rapid access to δ(3)-amino acids.
    Aitken LS; Hammond LE; Sundaram R; Shankland K; Brown GD; Cobb AJ
    Chem Commun (Camb); 2015 Sep; 51(70):13558-61. PubMed ID: 26223465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-Mimicking Materials from Designed Self-Assembly of Lysine-Rich Peptides and G-Quadruplex DNA/Hemin DNAzyme: Charge Effect of the Key Residues on the Catalytic Functions.
    Sun H; Wu H; Teng Q; Liu Y; Wang H; Wang ZG
    Biomacromolecules; 2022 Aug; 23(8):3469-3476. PubMed ID: 35901109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.