BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32129331)

  • 1. Tuning coordination chemistry through the second sphere in designed metallocoiled coils.
    Slope LN; Hill MG; Smith CF; Teare P; de Cogan FJ; Britton MM; Peacock AFA
    Chem Commun (Camb); 2020 Apr; 56(26):3729-3732. PubMed ID: 32129331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide DO3A-Complexes Bearing Peptide Substrates: The Effect of Peptidic Side Chains on Metal Coordination and Relaxivity.
    Laine S; Morfin JF; Galibert M; Aucagne V; Bonnet CS; Tóth É
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33918899
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Webster AM; Peacock AFA
    Chem Commun (Camb); 2021 Jul; 57(56):6851-6862. PubMed ID: 34151325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location dependent coordination chemistry and MRI relaxivity, in
    Berwick MR; Slope LN; Smith CF; King SM; Newton SL; Gillis RB; Adams GG; Rowe AJ; Harding SE; Britton MM; Peacock AFA
    Chem Sci; 2016 Mar; 7(3):2207-2216. PubMed ID: 29899946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Designed Imaging Agents Based on Lanthanide Peptides Complexes.
    Peacock AF
    Methods Enzymol; 2016; 580():557-80. PubMed ID: 27586349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.
    Zaytsev DV; Morozov VA; Fan J; Zhu X; Mukherjee M; Ni S; Kennedy MA; Ogawa MY
    J Inorg Biochem; 2013 Feb; 119():1-9. PubMed ID: 23160144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of second coordination sphere D-amino acids alters Cd(II) geometries in designed thiolate-rich proteins.
    Ruckthong L; Deb A; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Biol Inorg Chem; 2018 Jan; 23(1):123-135. PubMed ID: 29218636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding: study of their luminescence, relaxivity properties of Gd(iii) complexes, and PM3 theoretical calculations.
    Maffeo D; Lampropoulou M; Fardis M; Lazarou YG; Mavridis IM; Mavridou DA; Urso E; Pratsinis H; Kletsas D; Yannakopoulou K
    Org Biomol Chem; 2010 Apr; 8(8):1910-21. PubMed ID: 20449498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics.
    Boros E; Srinivas R; Kim HK; Raitsimring AM; Astashkin AV; Poluektov OG; Niklas J; Horning AD; Tidor B; Caravan P
    Angew Chem Int Ed Engl; 2017 May; 56(20):5603-5606. PubMed ID: 28398613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location-Dependent Lanthanide Selectivity Engineered into Structurally Characterized Designed Coiled Coils.
    Slope LN; Daubney OJ; Campbell H; White SA; Peacock AFA
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24473-24477. PubMed ID: 34495573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Metal-Coordination Polymers, Nets, and Frameworks from Synthetic Coiled-Coil Peptides.
    Tavenor NA; Murnin MJ; Horne WS
    J Am Chem Soc; 2017 Feb; 139(6):2212-2215. PubMed ID: 28161945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold-phosphine binding to de novo designed coiled coil peptides.
    Peacock AF; Bullen GA; Gethings LA; Williams JP; Kriel FH; Coates J
    J Inorg Biochem; 2012 Dec; 117():298-305. PubMed ID: 22902235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(iii)-nicotinamide.
    Harris M; Kolanowski JL; O'Neill ES; Henoumont C; Laurent S; Parac-Vogt TN; New EJ
    Chem Commun (Camb); 2018 Nov; 54(92):12986-12989. PubMed ID: 30387480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gadolinium(III) complex with 8-amidequinoline based ligand as copper(II) ion responsive contrast agent.
    Li WS; Luo J; Chen ZN
    Dalton Trans; 2011 Jan; 40(2):484-8. PubMed ID: 21113542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proton-conducting lanthanide metal-organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect.
    Liang X; Zhang F; Zhao H; Ye W; Long L; Zhu G
    Chem Commun (Camb); 2014 Jun; 50(49):6513-6. PubMed ID: 24821590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gd3TCAS2: An Aquated Gd(3+)-Thiacalix[4]arene Sandwich Cluster with Extremely Slow Ligand Substitution Kinetics.
    Iki N; Boros E; Nakamura M; Baba R; Caravan P
    Inorg Chem; 2016 Apr; 55(8):4000-5. PubMed ID: 27018719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-sphere coordination revisited.
    Liu Z; Schneebeli ST; Stoddart JF
    Chimia (Aarau); 2014; 68(5):315-20. PubMed ID: 24983807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.
    Caravan P
    Acc Chem Res; 2009 Jul; 42(7):851-62. PubMed ID: 19222207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.