These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32129416)

  • 1. Collective forces in scalar active matter.
    Speck T
    Soft Matter; 2020 Mar; 16(11):2652-2663. PubMed ID: 32129416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attraction-repulsion transition of force on wedges induced by active particles.
    Hua Y; Li K; Zhou X; He L; Zhang L
    Soft Matter; 2018 Jun; 14(25):5205-5212. PubMed ID: 29888771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillating collective motion of active rotors in confinement.
    Liu P; Zhu H; Zeng Y; Du G; Ning L; Wang D; Chen K; Lu Y; Zheng N; Ye F; Yang M
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11901-11907. PubMed ID: 32430333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sedimentation of concentrated monodisperse colloidal suspensions: role of collective particle interaction forces.
    Vesaratchanon JS; Nikolov A; Wasan DT
    J Colloid Interface Sci; 2008 Jun; 322(1):180-9. PubMed ID: 18384801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable long range forces mediated by self-propelled colloidal hard spheres.
    Ni R; Cohen Stuart MA; Bolhuis PG
    Phys Rev Lett; 2015 Jan; 114(1):018302. PubMed ID: 25615510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Casimir-like Forces in Flocking Active Matter.
    Fava G; Gambassi A; Ginelli F
    Phys Rev Lett; 2024 Oct; 133(14):148301. PubMed ID: 39423381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids.
    Ruiz-Garcia M; Barriuso G CM; Alexander LC; Aarts DGAL; Ghiringhelli LM; Valeriani C
    Phys Rev E; 2024 Jun; 109(6-1):064611. PubMed ID: 39020989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of structure formation by confined dipolar active particles.
    Telezki V; Klumpp S
    Soft Matter; 2020 Dec; 16(46):10537-10547. PubMed ID: 33078178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single active ring model with velocity self-alignment.
    Teixeira EF; Fernandes HCM; Brunnet LG
    Soft Matter; 2021 Jun; 17(24):5991-6000. PubMed ID: 34048522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex self-propelled rings: a minimal model for cell motility.
    Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G
    Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flocking ferromagnetic colloids.
    Kaiser A; Snezhko A; Aranson IS
    Sci Adv; 2017 Feb; 3(2):e1601469. PubMed ID: 28246633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced clustering of Escherichia coli by acoustic fields.
    Gutiérrez-Ramos S; Hoyos M; Ruiz-Suárez JC
    Sci Rep; 2018 Mar; 8(1):4668. PubMed ID: 29549342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing Medium Anisotropy To Control Active Matter.
    Aranson IS
    Acc Chem Res; 2018 Dec; 51(12):3023-3030. PubMed ID: 30379534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.
    Chen C; Liu S; Shi XQ; Chaté H; Wu Y
    Nature; 2017 Feb; 542(7640):210-214. PubMed ID: 28114301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the absence of collective motion in a bulk suspension of spontaneously rotating dielectric particles.
    Das D; Saintillan D
    Soft Matter; 2023 Sep; 19(35):6825-6837. PubMed ID: 37655464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct-forcing fictitious domain method for simulating non-Brownian active particles.
    Lin Z; Gao T
    Phys Rev E; 2019 Jul; 100(1-1):013304. PubMed ID: 31499789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.