These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32129483)

  • 1. Author response to: Comment on: Systematic review of the current status of cadaveric simulation for surgical training.
    James HK; Chapman AW; Pattison GTR; Griffin DR; Fisher JD
    Br J Surg; 2020 Mar; 107(4):468. PubMed ID: 32129483
    [No Abstract]   [Full Text] [Related]  

  • 2. Author response to: Comment on: Systematic review of the current status of cadaveric simulation for surgical training.
    James HK; Pattison GTR
    Br J Surg; 2020 Jun; 107(7):e238. PubMed ID: 32383501
    [No Abstract]   [Full Text] [Related]  

  • 3. Comment on: Systematic review of the current status of cadaveric simulation for surgical training.
    Angelo RL; Gallagher AG
    Br J Surg; 2020 Mar; 107(4):467. PubMed ID: 32129479
    [No Abstract]   [Full Text] [Related]  

  • 4. Comment on: Systematic review of the current status of cadaveric simulation for surgical training.
    Jones DJ; Baraza W
    Br J Surg; 2020 Jun; 107(7):e237. PubMed ID: 32383158
    [No Abstract]   [Full Text] [Related]  

  • 5. Cadaveric simulation for improving surgical training in dermatology.
    Hazan E; Torbeck R; Connolly D; Wang JV; Griffin T; Keller M; Trufant J
    Dermatol Online J; 2018 Jun; 24(6):. PubMed ID: 30142720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadaveric Simulation for Dermatologic Surgery Training.
    Kent S; Belcher M; Potter KA
    Dermatol Surg; 2021 Sep; 47(9):1289-1290. PubMed ID: 33867472
    [No Abstract]   [Full Text] [Related]  

  • 7. Effectiveness of Cadaveric Simulation in Neurosurgical Training: A Review of the Literature.
    Gnanakumar S; Kostusiak M; Budohoski KP; Barone D; Pizzuti V; Kirollos R; Santarius T; Trivedi R
    World Neurosurg; 2018 Oct; 118():88-96. PubMed ID: 30017763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy.
    Andersen SA; Foghsgaard S; Konge L; Cayé-Thomasen P; Sørensen MS
    Laryngoscope; 2016 Aug; 126(8):1883-8. PubMed ID: 26452157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared.
    Andersen SA; Mikkelsen PT; Konge L; Cayé-Thomasen P; Sørensen MS
    J Surg Educ; 2016; 73(1):45-50. PubMed ID: 26481267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Perfusion-Based Cadaveric Simulation Model Integrated into Neurosurgical Training: Feasibility Based On Reconstitution of Vascular and Cerebrospinal Fluid Systems.
    Zada G; Bakhsheshian J; Pham M; Minneti M; Christian E; Winer J; Robison A; Wrobel B; Russin J; Mack WJ; Giannotta S
    Oper Neurosurg (Hagerstown); 2018 Jan; 14(1):72-80. PubMed ID: 29117409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What to consider when designing a laparoscopic colorectal training curriculum: a review of the literature.
    Gaitanidis A; Simopoulos C; Pitiakoudis M
    Tech Coloproctol; 2018 Mar; 22(3):151-160. PubMed ID: 29512045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Resident Performance in Knee Arthroscopy: A Prospective Value Assessment of Simulators and Cadaveric Skills Laboratories.
    Camp CL; Krych AJ; Stuart MJ; Regnier TD; Mills KM; Turner NS
    J Bone Joint Surg Am; 2016 Feb; 98(3):220-5. PubMed ID: 26842412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training.
    Andersen SAW; Konge L; Sørensen MS
    Med Teach; 2018 Jul; 40(7):684-689. PubMed ID: 29730952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Training Model for Cervical Trauma Using Cadavers.
    Simões CA; Ribeiro MAF; Portilho AS; Favaro M; Santin S; Ferrada P; Dedivitis RA; Cernea CR
    Am Surg; 2019 Jan; 85(1):e21-e23. PubMed ID: 30760363
    [No Abstract]   [Full Text] [Related]  

  • 15. Systematic review of the implementation of simulation training in surgical residency curriculum.
    Kurashima Y; Hirano S
    Surg Today; 2017 Jul; 47(7):777-782. PubMed ID: 28004190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation training improves resident performance in hand-sewn vascular and bowel anastomoses.
    Egle JP; Malladi SV; Gopinath N; Mittal VK
    J Surg Educ; 2015; 72(2):291-6. PubMed ID: 25481803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simulator for Surgical Training].
    Park Y; Yokoyama H
    Kyobu Geka; 2018 Sep; 71(10):779-787. PubMed ID: 30310027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfusion-based human cadaveric specimen as a simulation training model in repairing cerebrospinal fluid leaks during endoscopic endonasal skull base surgery.
    Christian EA; Bakhsheshian J; Strickland BA; Fredrickson VL; Buchanan IA; Pham MH; Cervantes A; Minneti M; Wrobel BB; Giannotta S; Zada G
    J Neurosurg; 2018 Sep; 129(3):792-796. PubMed ID: 29099299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadaver-Based Simulation Increases Resident Confidence, Initial Exposure to Fundamental Techniques, and May Augment Operative Autonomy.
    Kim SC; Fisher JG; Delman KA; Hinman JM; Srinivasan JK
    J Surg Educ; 2016; 73(6):e33-e41. PubMed ID: 27488813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrist Arthroscopy: Can We Gain Proficiency Through Knee Arthroscopy Simulation?
    Ode G; Loeffler B; Chadderdon RC; Haines N; Scannell B; Patt J; Gaston G
    J Surg Educ; 2018 Nov; 75(6):1664-1672. PubMed ID: 29730181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.