These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32129568)

  • 1. Maize WI5 encodes an endo-1,4-β-xylanase required for secondary cell wall synthesis and water transport in xylem.
    Hu X; Cui Y; Lu X; Song W; Lei L; Zhu J; Lai J; E L; Zhao H
    J Integr Plant Biol; 2020 Oct; 62(10):1607-1624. PubMed ID: 32129568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.).
    Bahrun A; Jensen CR; Asch F; Mogensen VO
    J Exp Bot; 2002 Feb; 53(367):251-63. PubMed ID: 11807129
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Dong Z; Xu Z; Xu L; Galli M; Gallavotti A; Dooner HK; Chuck G
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20908-20919. PubMed ID: 32778598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a Trichoderma reesei β-1,4 endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses.
    Buanafina MM; Langdon T; Dalton S; Morris P
    Planta; 2012 Dec; 236(6):1757-74. PubMed ID: 22878642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum.
    Pramod S; Saha T; Rekha K; Kavi Kishor PB
    Plant Cell Rep; 2021 Jan; 40(1):127-142. PubMed ID: 33068174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize.
    Oliveira DM; Mota TR; Salatta FV; Sinzker RC; Končitíková R; Kopečný D; Simister R; Silva M; Goeminne G; Morreel K; Rencoret J; Gutiérrez A; Tryfona T; Marchiosi R; Dupree P; Del Río JC; Boerjan W; McQueen-Mason SJ; Gomez LD; Ferrarese-Filho O; Dos Santos WD
    Plant Cell Environ; 2020 Sep; 43(9):2172-2191. PubMed ID: 32441772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants.
    Guillaumie S; Goffner D; Barbier O; Martinant JP; Pichon M; Barrière Y
    BMC Plant Biol; 2008 Jun; 8():71. PubMed ID: 18582385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.
    Sindhu A; Langewisch T; Olek A; Multani DS; McCann MC; Vermerris W; Carpita NC; Johal G
    Plant Physiol; 2007 Dec; 145(4):1444-59. PubMed ID: 17932309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes.
    Hao Z; Mohnen D
    Crit Rev Biochem Mol Biol; 2014; 49(3):212-41. PubMed ID: 24564339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Arabidopsis family GT106 glycosyltransferase is essential for xylan biosynthesis and secondary wall deposition.
    Zhong R; Phillips DR; Adams ER; Ye ZH
    Planta; 2023 Jan; 257(2):43. PubMed ID: 36689015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood.
    Derba-Maceluch M; Awano T; Takahashi J; Lucenius J; Ratke C; Kontro I; Busse-Wicher M; Kosik O; Tanaka R; Winzéll A; Kallas Å; Leśniewska J; Berthold F; Immerzeel P; Teeri TT; Ezcurra I; Dupree P; Serimaa R; Mellerowicz EJ
    New Phytol; 2015 Jan; 205(2):666-81. PubMed ID: 25307149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosol-Localized UDP-Xylose Synthases Provide the Major Source of UDP-Xylose for the Biosynthesis of Xylan and Xyloglucan.
    Zhong R; Teng Q; Haghighat M; Yuan Y; Furey ST; Dasher RL; Ye ZH
    Plant Cell Physiol; 2017 Jan; 58(1):156-174. PubMed ID: 28011867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize.
    Zhang K; Xue M; Qin F; He Y; Zhou Y
    Plant Biotechnol J; 2023 Dec; 21(12):2560-2573. PubMed ID: 37572352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium,
    Kim DY; Kim J; Lee YM; Lee JS; Shin DH; Ku BH; Son KH; Park HY
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33946575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of heteroxylans from vitreous and floury endosperms of maize grain and impact on the enzymatic degradation.
    Bonnin E; Joseph-Aimé M; Fillaudeau L; Durand S; Falourd X; Le Gall S; Saulnier L
    Carbohydr Polym; 2022 Feb; 278():118942. PubMed ID: 34973760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global and grain-specific accumulation of glycoside hydrolase family 10 xylanases in transgenic maize (Zea mays).
    Gray BN; Bougri O; Carlson AR; Meissner J; Pan S; Parker MH; Zhang D; Samoylov V; Ekborg NA; Michael Raab R
    Plant Biotechnol J; 2011 Dec; 9(9):1100-8. PubMed ID: 21689368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls.
    Hervé C; Rogowski A; Gilbert HJ; Paul Knox J
    Plant J; 2009 May; 58(3):413-22. PubMed ID: 19144002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan.
    Yuan Y; Teng Q; Zhong R; Ye ZH
    Plant Cell Physiol; 2013 Jul; 54(7):1186-99. PubMed ID: 23659919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis
    Kushwah S; Banasiak A; Nishikubo N; Derba-Maceluch M; Majda M; Endo S; Kumar V; Gomez L; Gorzsas A; McQueen-Mason S; Braam J; Sundberg B; Mellerowicz EJ
    Plant Physiol; 2020 Apr; 182(4):1946-1965. PubMed ID: 32005783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic and proteomic changes in the xylem sap of maize under drought.
    Alvarez S; Marsh EL; Schroeder SG; Schachtman DP
    Plant Cell Environ; 2008 Mar; 31(3):325-40. PubMed ID: 18088330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.