These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32129599)
1. A Filter Supported Surface-Enhanced Raman Scattering "Nose" for Point-of-Care Monitoring of Gaseous Metabolites of Bacteria. Guo J; Liu Y; Yang Y; Li Y; Wang R; Ju H Anal Chem; 2020 Apr; 92(7):5055-5063. PubMed ID: 32129599 [TBL] [Abstract][Full Text] [Related]
2. Surface-Enhanced Raman Spectroscopy for the Detection of a Metabolic Product in the Headspace Above Live Bacterial Cultures. Kelly J; Patrick R; Patrick S; Bell SEJ Angew Chem Int Ed Engl; 2018 Nov; 57(48):15686-15690. PubMed ID: 30291659 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Aluminum Foil Integrated Pegylated Gold Nanoparticle Surface-Enhanced Raman Scattering Substrate for the Detection and Classification of Uropathogenic Bacteria. Yadav A; Yadav AK; NaziaTarannum ACS Appl Bio Mater; 2024 Sep; 7(9):6127-6137. PubMed ID: 39133870 [TBL] [Abstract][Full Text] [Related]
4. Food-borne bacteria analysis using a diatomite bioinspired SERS platform. Chen Y; Ye B; Ning M; Li M; Pu Y; Liu Z; Zhong H; Hu C; Guo Z J Mater Chem B; 2024 Jun; 12(24):5974-5981. PubMed ID: 38809058 [TBL] [Abstract][Full Text] [Related]
5. Sea hedgehog-inspired surface-enhanced Raman scattering biosensor probe for ultrasensitive determination of Staphylococcus aureus in food supplements. Tao Y; Liu Q; Cheng N Biosens Bioelectron; 2024 May; 252():116146. PubMed ID: 38417286 [TBL] [Abstract][Full Text] [Related]
6. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721 [TBL] [Abstract][Full Text] [Related]
7. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Wang Y; Li Q; Zhang R; Tang K; Ding C; Yu S Mikrochim Acta; 2020 Apr; 187(5):290. PubMed ID: 32342176 [TBL] [Abstract][Full Text] [Related]
8. SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates. Andrei CC; Moraillon A; Larquet E; Potara M; Astilean S; Jakab E; Bouckaert J; Rosselle L; Skandrani N; Boukherroub R; Ozanam F; Szunerits S; Gouget-Laemmel AC Anal Bioanal Chem; 2021 Feb; 413(5):1417-1428. PubMed ID: 33388848 [TBL] [Abstract][Full Text] [Related]
9. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids. Szymborski T; Witkowska E; Adamkiewicz W; Waluk J; Kamińska A Analyst; 2014 Oct; 139(20):5061-4. PubMed ID: 25136938 [TBL] [Abstract][Full Text] [Related]
10. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. Chen L; Mungroo N; Daikuara L; Neethirajan S J Nanobiotechnology; 2015 Jun; 13():45. PubMed ID: 26108554 [TBL] [Abstract][Full Text] [Related]
11. Sensitive and reproducible gold nanostar@metal-organic framework-based SERS membranes for the online monitoring of the freshness of shrimps. Guo H; Li Y; Pi F Analyst; 2023 May; 148(9):2081-2091. PubMed ID: 37009662 [TBL] [Abstract][Full Text] [Related]
12. Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification. Franco D; De Plano LM; Rizzo MG; Scibilia S; Lentini G; Fazio E; Neri F; Guglielmino SPP; Mezzasalma AM Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117394. PubMed ID: 31351419 [TBL] [Abstract][Full Text] [Related]
13. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Wang Y; Ravindranath S; Irudayaraj J Anal Bioanal Chem; 2011 Jan; 399(3):1271-8. PubMed ID: 21136046 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications. Vitol EA; Friedman G; Gogotsi Y J Nanosci Nanotechnol; 2014 Apr; 14(4):3046-51. PubMed ID: 24734732 [TBL] [Abstract][Full Text] [Related]
15. Rapid detection of bacteria using gold nanoparticles in SERS with three different capping agents: Thioglucose, polyvinylpyrrolidone, and citrate. Deb M; Hunter R; Taha M; Abdelbary H; Anis H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121533. PubMed ID: 35752039 [TBL] [Abstract][Full Text] [Related]
16. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Sivanesan A; Witkowska E; Adamkiewicz W; Dziewit Ł; Kamińska A; Waluk J Analyst; 2014 Mar; 139(5):1037-43. PubMed ID: 24419003 [TBL] [Abstract][Full Text] [Related]
17. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. Lin D; Qin T; Wang Y; Sun X; Chen L ACS Appl Mater Interfaces; 2014 Jan; 6(2):1320-9. PubMed ID: 24380413 [TBL] [Abstract][Full Text] [Related]
18. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer. Mahmoud AYF; Rusin CJ; McDermott MT Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204 [TBL] [Abstract][Full Text] [Related]
19. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Chu H; Huang Y; Zhao Y Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867 [TBL] [Abstract][Full Text] [Related]
20. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity. Ndokoye P; Li X; Zhao Q; Li T; Tade MO; Liu S J Colloid Interface Sci; 2016 Jan; 462():341-50. PubMed ID: 26476203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]