These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32129603)

  • 61. Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery.
    Fu M; Zhang C; Dai Y; Li X; Pan M; Huang W; Qian H; Ge L
    Biomater Sci; 2018 May; 6(6):1480-1491. PubMed ID: 29623975
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An Engineered Nanosugar Enables Rapid and Sustained Glucose-Responsive Insulin Delivery in Diabetic Mice.
    Xu R; Bhangu SK; Sourris KC; Vanni D; Sani MA; Karas JA; Alt K; Niego B; Ale A; Besford QA; Dyett B; Patrick J; Carmichael I; Shaw JE; Caruso F; Cooper ME; Hagemeyer CE; Cavalieri F
    Adv Mater; 2023 May; 35(21):e2210392. PubMed ID: 36908046
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-Regulated Carboxyphenylboronic Acid-Modified Mesoporous Silica Nanoparticles with "Touch Switch" Releasing Property for Insulin Delivery.
    Hou L; Zheng Y; Wang Y; Hu Y; Shi J; Liu Q; Zhang H; Zhang Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21927-21938. PubMed ID: 29932320
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.
    Liu L; Zhou C; Xia X; Liu Y
    Int J Nanomedicine; 2016; 11():761-9. PubMed ID: 26966360
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition.
    Kwon YM; Kim SW
    Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Self-accelerating H
    Tang Y; Ji Y; Yi C; Cheng D; Wang B; Fu Y; Xu Y; Qian X; Choonara YE; Pillay V; Zhu W; Liu Y; Nie Z
    Theranostics; 2020; 10(19):8691-8704. PubMed ID: 32754272
    [No Abstract]   [Full Text] [Related]  

  • 67. [Study on preparation and oral efficacy of insulin-loaded poly(lactic-co-glycolic acid) nanoparticles].
    Pan Y; Xu H; Zhao HY; Wei G; Zheng JM
    Yao Xue Xue Bao; 2002 May; 37(5):374-7. PubMed ID: 12579845
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection.
    Sonaje K; Lin KJ; Wey SP; Lin CK; Yeh TH; Nguyen HN; Hsu CW; Yen TC; Juang JH; Sung HW
    Biomaterials; 2010 Sep; 31(26):6849-58. PubMed ID: 20619787
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery.
    Oroval M; Díez P; Aznar E; Coll C; Marcos MD; Sancenón F; Villalonga R; Martínez-Máñez R
    Chemistry; 2017 Jan; 23(6):1353-1360. PubMed ID: 27859880
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthetic enzyme-based nanoparticles act as smart catalyst for glucose responsive release of insulin.
    Jana BA; Shinde U; Wadhwani A
    J Biotechnol; 2020 Dec; 324():1-6. PubMed ID: 32987063
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation.
    Sun S; Liang N; Piao H; Yamamoto H; Kawashima Y; Cui F
    J Microencapsul; 2010; 27(6):471-8. PubMed ID: 20113168
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of polymers ratio on insulin-loaded nanoparticles based on poly-epsilon-caprolactone and Eudragit RS for oral administration.
    Socha M; Sapin A; Damgé C; Maincent P
    Drug Deliv; 2009 Nov; 16(8):430-6. PubMed ID: 19839787
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glucose Oxidase-Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy.
    Zhao W; Hu J; Gao W
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23528-23535. PubMed ID: 28650613
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation.
    Zhou X; Wu H; Long R; Wang S; Huang H; Xia Y; Wang P; Lei Y; Cai Y; Cai D; Liu Y
    J Nanobiotechnology; 2020 Jul; 18(1):96. PubMed ID: 32664978
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel ligand conjugated nanoparticles for oral insulin delivery.
    Liu C; Shan W; Liu M; Zhu X; Xu J; Xu Y; Huang Y
    Drug Deliv; 2016 Jul; 23(6):2015-25. PubMed ID: 26203690
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin.
    Xu B; Jiang G; Yu W; Liu D; Liu Y; Kong X; Yao J
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():420-428. PubMed ID: 28576004
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Coordination on the Glucose-Responsiveness of PEG-b-(PAA-co-PAAPBA) Micelles.
    Wang B; Ma R; Liu G; Liu X; Gao Y; Shen J; An Y; Shi L
    Macromol Rapid Commun; 2010 Sep; 31(18):1628-34. PubMed ID: 21567574
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery.
    Cui G; Zhao K; You K; Gao Z; Kakuchi T; Feng B; Duan Q
    Sci Technol Adv Mater; 2020; 21(1):1-10. PubMed ID: 32002087
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multivesicular Liposomes for Glucose-Responsive Insulin Delivery.
    Liu G; He S; Ding Y; Chen C; Cai Q; Zhou W
    Pharmaceutics; 2021 Dec; 14(1):. PubMed ID: 35056918
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin.
    Jain S; Rathi VV; Jain AK; Das M; Godugu C
    Nanomedicine (Lond); 2012 Sep; 7(9):1311-37. PubMed ID: 22583576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.