BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32129615)

  • 1. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code.
    Katoh T; Suga H
    J Am Chem Soc; 2020 Mar; 142(11):4965-4969. PubMed ID: 32129615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal incorporation of cyclic β-amino acids into peptides using in vitro translation.
    Lee J; Torres R; Kim DS; Byrom M; Ellington AD; Jewett MC
    Chem Commun (Camb); 2020 May; 56(42):5597-5600. PubMed ID: 32400780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers.
    Reid PC; Goto Y; Katoh T; Suga H
    Methods Mol Biol; 2012; 805():335-48. PubMed ID: 22094815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consecutive Elongation of D-Amino Acids in Translation.
    Katoh T; Tajima K; Suga H
    Cell Chem Biol; 2017 Jan; 24(1):46-54. PubMed ID: 28042044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal Incorporation of Consecutive β-Amino Acids.
    Katoh T; Suga H
    J Am Chem Soc; 2018 Sep; 140(38):12159-12167. PubMed ID: 30221942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal synthesis of unnatural peptides.
    Josephson K; Hartman MC; Szostak JW
    J Am Chem Soc; 2005 Aug; 127(33):11727-35. PubMed ID: 16104750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro.
    Lee J; Schwarz KJ; Kim DS; Moore JS; Jewett MC
    Nat Commun; 2020 Aug; 11(1):4304. PubMed ID: 32855412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
    Sigal M; Matsumoto S; Beattie A; Katoh T; Suga H
    Chem Rev; 2024 May; 124(10):6444-6500. PubMed ID: 38688034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal Synthesis of Macrocyclic Peptides with Linear γ
    Adaligil E; Song A; Cunningham CN; Fairbrother WJ
    ACS Chem Biol; 2021 Aug; 16(8):1325-1331. PubMed ID: 34270222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids.
    Frost JR; Jacob NT; Papa LJ; Owens AE; Fasan R
    ACS Chem Biol; 2015 Aug; 10(8):1805-16. PubMed ID: 25933125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation.
    Katoh T; Iwane Y; Suga H
    Nucleic Acids Res; 2017 Dec; 45(22):12601-12610. PubMed ID: 29155943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids.
    Katoh T; Suga H
    Annu Rev Biochem; 2022 Jun; 91():221-243. PubMed ID: 35729073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes.
    Hecht SM
    J Mol Biol; 2022 Apr; 434(8):167211. PubMed ID: 34419431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro Display.
    Takatsuji R; Shinbara K; Katoh T; Goto Y; Passioura T; Yajima R; Komatsu Y; Suga H
    J Am Chem Soc; 2019 Feb; 141(6):2279-2287. PubMed ID: 30648857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.
    Guerra A; Brea RJ; Amorín M; Castedo L; Granja JR
    Org Biomol Chem; 2012 Nov; 10(44):8762-6. PubMed ID: 23060041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse backbone-cyclized peptides via codon reprogramming.
    Kawakami T; Ohta A; Ohuchi M; Ashigai H; Murakami H; Suga H
    Nat Chem Biol; 2009 Dec; 5(12):888-90. PubMed ID: 19915537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNA engineering for manipulating genetic code.
    Katoh T; Iwane Y; Suga H
    RNA Biol; 2018; 15(4-5):453-460. PubMed ID: 28722545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the different ribosomal phases during the translational elongation cycle in rabbit reticulocyte lysates.
    Nygård O; Nilsson L
    Eur J Biochem; 1984 Dec; 145(2):345-50. PubMed ID: 6568179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.