These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32129702)
1. Bayesian joint modeling of ordinal longitudinal measurements and competing risks survival data for analysing Tehran Lipid and Glucose Study. Baghfalaki T; Kalantari S; Ganjali M; Hadaegh F; Pahlavanzadeh B J Biopharm Stat; 2020 Jul; 30(4):689-703. PubMed ID: 32129702 [TBL] [Abstract][Full Text] [Related]
2. Bayesian nonparametric mixed-effects joint model for longitudinal-competing risks data analysis in presence of multiple data features. Lu T Stat Methods Med Res; 2017 Oct; 26(5):2407-2423. PubMed ID: 26265770 [TBL] [Abstract][Full Text] [Related]
3. Robust joint modeling of longitudinal measurements and competing risks failure time data. Li N; Elashoff RM; Li G Biom J; 2009 Feb; 51(1):19-30. PubMed ID: 19197956 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous inference for semiparametric mixed-effects joint models with skew distribution and covariate measurement error for longitudinal competing risks data analysis. Lu T J Biopharm Stat; 2017; 27(6):1009-1027. PubMed ID: 28272995 [TBL] [Abstract][Full Text] [Related]
5. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Huang X; Li G; Elashoff RM; Pan J Lifetime Data Anal; 2011 Jan; 17(1):80-100. PubMed ID: 20549344 [TBL] [Abstract][Full Text] [Related]
6. Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach. Proust-Lima C; Dartigues JF; Jacqmin-Gadda H Stat Med; 2016 Feb; 35(3):382-98. PubMed ID: 26376900 [TBL] [Abstract][Full Text] [Related]
7. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Li N; Elashoff RM; Li G; Saver J Stat Med; 2010 Feb; 29(5):546-57. PubMed ID: 19943331 [TBL] [Abstract][Full Text] [Related]
8. Joint analysis of longitudinal measurements and spatially clustered competing risks HIV/AIDS data. Momenyan S Stat Med; 2021 Dec; 40(28):6459-6477. PubMed ID: 34519089 [TBL] [Abstract][Full Text] [Related]
9. Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions. Baghfalaki T; Ganjali M; Hashemi R J Biopharm Stat; 2014; 24(4):834-55. PubMed ID: 24697192 [TBL] [Abstract][Full Text] [Related]
10. A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies. Ganjali M; Baghfalaki T J Biopharm Stat; 2015; 25(5):1077-99. PubMed ID: 25372017 [TBL] [Abstract][Full Text] [Related]
11. Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data. Deslandes E; Chevret S BMC Med Res Methodol; 2010 Jul; 10():69. PubMed ID: 20670425 [TBL] [Abstract][Full Text] [Related]
12. Approximate Bayesian inference for joint linear and partially linear modeling of longitudinal zero-inflated count and time to event data. Baghfalaki T; Ganjali M Stat Methods Med Res; 2021 Jun; 30(6):1484-1501. PubMed ID: 33872092 [TBL] [Abstract][Full Text] [Related]
13. A tractable Bayesian joint model for longitudinal and survival data. Alvares D; Rubio FJ Stat Med; 2021 Aug; 40(19):4213-4229. PubMed ID: 34114254 [TBL] [Abstract][Full Text] [Related]
14. Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study. Ngwa JS; Cabral HJ; Cheng DM; Gagnon DR; LaValley MP; Cupples LA BMC Med Res Methodol; 2021 Feb; 21(1):29. PubMed ID: 33568059 [TBL] [Abstract][Full Text] [Related]
15. Bayesian hierarchical joint modeling of repeatedly measured continuous and ordinal markers of disease severity: Application to Ugandan diabetes data. Buhule OD; Wahed AS; Youk AO Stat Med; 2017 Dec; 36(29):4677-4691. PubMed ID: 28833382 [TBL] [Abstract][Full Text] [Related]
16. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Hu W; Li G; Li N Stat Med; 2009 May; 28(11):1601-19. PubMed ID: 19308919 [TBL] [Abstract][Full Text] [Related]
17. Joint modeling of two longitudinal outcomes and competing risk data. Andrinopoulou ER; Rizopoulos D; Takkenberg JJ; Lesaffre E Stat Med; 2014 Aug; 33(18):3167-78. PubMed ID: 24676841 [TBL] [Abstract][Full Text] [Related]
18. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Huang X; Li G; Elashoff RM Stat Interface; 2010; 3(2):185-195. PubMed ID: 21892381 [TBL] [Abstract][Full Text] [Related]
19. Partially linear mixed-effects joint models for skewed and missing longitudinal competing risks outcomes. Lu T; Lu M; Wang M; Zhang J; Dong GH; Xu Y J Biopharm Stat; 2019; 29(6):971-989. PubMed ID: 29252088 [TBL] [Abstract][Full Text] [Related]
20. A two-stage approach for joint modeling of longitudinal measurements and competing risks data. Mehdizadeh P; Baghfalaki T; Esmailian M; Ganjali M J Biopharm Stat; 2021 Jul; 31(4):448-468. PubMed ID: 33905295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]