These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32129878)

  • 1. Integrated Hydrologic Modeling to Untangle the Impacts of Water Management During Drought.
    Thatch LM; Gilbert JM; Maxwell RM
    Ground Water; 2020 May; 58(3):377-391. PubMed ID: 32129878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projecting groundwater storage changes in California's Central Valley.
    Massoud EC; Purdy AJ; Miro ME; Famiglietti JS
    Sci Rep; 2018 Aug; 8(1):12917. PubMed ID: 30150690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Groundwater depletion in California's Central Valley accelerates during megadrought.
    Liu PW; Famiglietti JS; Purdy AJ; Adams KH; McEvoy AL; Reager JT; Bindlish R; Wiese DN; David CH; Rodell M
    Nat Commun; 2022 Dec; 13(1):7825. PubMed ID: 36535940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From fallow ground to common ground: Perspectives on future land uses in the San Joaquin valley under sustainable groundwater management.
    Espinoza V; Bernacchi LA; Eriksson M; Schiller A; Hayden A; Viers JH
    J Environ Manage; 2023 May; 333():117226. PubMed ID: 36758414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California.
    Agarwal V; Akyilmaz O; Shum CK; Feng W; Yang TY; Forootan E; Syed TH; Haritashya UK; Uz M
    Sci Total Environ; 2023 Mar; 865():161138. PubMed ID: 36586696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrieving Groundwater Depletion and Drought in the Tigris-Euphrates Basin Between 2003 and 2015.
    Chao N; Luo Z; Wang Z; Jin T
    Ground Water; 2018 Sep; 56(5):770-782. PubMed ID: 29088492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the utility of remote sensing data to accurately estimate changes in groundwater storage.
    Ahamed A; Knight R; Alam S; Pauloo R; Melton F
    Sci Total Environ; 2022 Feb; 807(Pt 1):150635. PubMed ID: 34606871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal distribution of groundwater drought using GRACE-based satellite estimates: a case study of Lower Gangetic Basin, India.
    Nandi S; Biswas S
    Environ Monit Assess; 2024 Jan; 196(2):151. PubMed ID: 38225529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater Loss and Aquifer System Compaction in San Joaquin Valley During 2012-2015 Drought.
    Ojha C; Werth S; Shirzaei M
    J Geophys Res Solid Earth; 2019 Mar; 124(3):3127-3143. PubMed ID: 31218156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging the gap between GRACE and GRACE-FO missions with deep learning aided water storage simulations.
    Uz M; Atman KG; Akyilmaz O; Shum CK; Keleş M; Ay T; Tandoğdu B; Zhang Y; Mercan H
    Sci Total Environ; 2022 Jul; 830():154701. PubMed ID: 35337878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought.
    McLaughlin BC; Blakey R; Weitz AP; Feng X; Brown BJ; Ackerly DD; Dawson TE; Thompson SE
    Glob Chang Biol; 2020 May; 26(5):3091-3107. PubMed ID: 32056344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying robust adaptive irrigation operating policies to balance deeply uncertain economic food production and groundwater sustainability trade-offs.
    Rodríguez-Flores JM; Gupta RS; Zeff HB; Reed PM; Medellín-Azuara J
    J Environ Manage; 2023 Nov; 345():118901. PubMed ID: 37688958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planning for groundwater sustainability accounting for uncertainty and costs: An application to California's Central Valley.
    Escriva-Bou A; Hui R; Maples S; Medellín-Azuara J; Harter T; Lund JR
    J Environ Manage; 2020 Jun; 264():110426. PubMed ID: 32217315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts.
    Liu Y; Shan F; Yue H; Wang X; Fan Y
    J Environ Manage; 2023 May; 333():117460. PubMed ID: 36758412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of groundwater management on energy resources and greenhouse gas emissions in California.
    Hendrickson TP; Bruguera M
    Water Res; 2018 Sep; 141():196-207. PubMed ID: 29793159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.
    Iqbal N; Hossain F; Lee H; Akhter G
    Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA.
    Hansen JA; Jurgens BC; Fram MS
    Sci Total Environ; 2018 Nov; 642():125-136. PubMed ID: 29894872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data.
    Rateb A; Scanlon BR; Kuo CY
    Sci Total Environ; 2021 Apr; 766():144337. PubMed ID: 33421786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainability of irrigated agriculture in the San Joaquin Valley, California.
    Schoups G; Hopmans JW; Young CA; Vrugt JA; Wallender WW; Tanji KK; Panday S
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15352-6. PubMed ID: 16230610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.