These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 32129893)

  • 1. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma.
    Akbari H; Rathore S; Bakas S; Nasrallah MP; Shukla G; Mamourian E; Rozycki M; Bagley SJ; Rudie JD; Flanders AE; Dicker AP; Desai AS; O'Rourke DM; Brem S; Lustig R; Mohan S; Wolf RL; Bilello M; Martinez-Lage M; Davatzikos C
    Cancer; 2020 Jun; 126(11):2625-2636. PubMed ID: 32129893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas.
    de Godoy LL; Mohan S; Wang S; Nasrallah MP; Sakai Y; O'Rourke DM; Bagley S; Desai A; Loevner LA; Poptani H; Chawla S
    J Transl Med; 2023 Apr; 21(1):287. PubMed ID: 37118754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation.
    Qian X; Tan H; Zhang J; Zhao W; Chan MD; Zhou X
    Med Phys; 2016 Nov; 43(11):5889. PubMed ID: 27806598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients.
    Moassefi M; Faghani S; Conte GM; Kowalchuk RO; Vahdati S; Crompton DJ; Perez-Vega C; Cabreja RAD; Vora SA; Quiñones-Hinojosa A; Parney IF; Trifiletti DM; Erickson BJ
    J Neurooncol; 2022 Sep; 159(2):447-455. PubMed ID: 35852738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma.
    Verma G; Chawla S; Mohan S; Wang S; Nasrallah M; Sheriff S; Desai A; Brem S; O'Rourke DM; Wolf RL; Maudsley AA; Poptani H
    NMR Biomed; 2019 Feb; 32(2):e4042. PubMed ID: 30556932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma.
    Chawla S; Bukhari S; Afridi OM; Wang S; Yadav SK; Akbari H; Verma G; Nath K; Haris M; Bagley S; Davatzikos C; Loevner LA; Mohan S
    NMR Biomed; 2022 Jul; 35(7):e4719. PubMed ID: 35233862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma.
    Fathi Kazerooni A; Akbari H; Shukla G; Badve C; Rudie JD; Sako C; Rathore S; Bakas S; Pati S; Singh A; Bergman M; Ha SM; Kontos D; Nasrallah M; Bagley SJ; Lustig RA; O'Rourke DM; Sloan AE; Barnholtz-Sloan JS; Mohan S; Bilello M; Davatzikos C
    JCO Clin Cancer Inform; 2020 Mar; 4():234-244. PubMed ID: 32191542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature.
    Akbari H; Bakas S; Pisapia JM; Nasrallah MP; Rozycki M; Martinez-Lage M; Morrissette JJD; Dahmane N; O'Rourke DM; Davatzikos C
    Neuro Oncol; 2018 Jul; 20(8):1068-1079. PubMed ID: 29617843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis.
    Sidibe I; Tensaouti F; Gilhodes J; Cabarrou B; Filleron T; Desmoulin F; Ken S; Noël G; Truc G; Sunyach MP; Charissoux M; Magné N; Lotterie JA; Roques M; Péran P; Cohen-Jonathan Moyal E; Laprie A
    Radiother Oncol; 2023 Apr; 181():109486. PubMed ID: 36706959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DC-AL GAN: Pseudoprogression and true tumor progression of glioblastoma multiform image classification based on DCGAN and AlexNet.
    Li M; Tang H; Chan MD; Zhou X; Qian X
    Med Phys; 2020 Mar; 47(3):1139-1150. PubMed ID: 31885094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma.
    Elshafeey N; Kotrotsou A; Hassan A; Elshafei N; Hassan I; Ahmed S; Abrol S; Agarwal A; El Salek K; Bergamaschi S; Acharya J; Moron FE; Law M; Fuller GN; Huse JT; Zinn PO; Colen RR
    Nat Commun; 2019 Jul; 10(1):3170. PubMed ID: 31320621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance.
    Qian X; Tan H; Liu X; Zhao W; Chan MD; Kim P; Zhou X
    Genes (Basel); 2024 Jun; 15(6):. PubMed ID: 38927654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined analysis of MGMT methylation and dynamic-susceptibility-contrast MRI for the distinction between early and pseudo-progression in glioblastoma patients.
    Bani-Sadr A; Berner LP; Barritault M; Chamard L; Bidet CM; Eker OF; Hermier M; Guyotat J; Jouanneau E; Meyronet D; Gouttard S; D'Hombres A; Iziquierdo C; Honnorat J; Berthezène Y; Ducray F
    Rev Neurol (Paris); 2019 Oct; 175(9):534-543. PubMed ID: 31208813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidence, molecular characteristics, and imaging features of "clinically-defined pseudoprogression" in newly diagnosed glioblastoma treated with chemoradiation.
    Hagiwara A; Schlossman J; Shabani S; Raymond C; Tatekawa H; Abrey LE; Garcia J; Chinot O; Saran F; Nishikawa R; Henriksson R; Mason WP; Wick W; Cloughesy TF; Ellingson BM
    J Neurooncol; 2022 Sep; 159(3):509-518. PubMed ID: 35842871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques.
    Macyszyn L; Akbari H; Pisapia JM; Da X; Attiah M; Pigrish V; Bi Y; Pal S; Davuluri RV; Roccograndi L; Dahmane N; Martinez-Lage M; Biros G; Wolf RL; Bilello M; O'Rourke DM; Davatzikos C
    Neuro Oncol; 2016 Mar; 18(3):417-25. PubMed ID: 26188015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time.
    Liao X; Cai B; Tian B; Luo Y; Song W; Li Y
    J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data.
    Lee MH; Kim J; Kim ST; Shin HM; You HJ; Choi JW; Seol HJ; Nam DH; Lee JI; Kong DS
    World Neurosurg; 2019 May; 125():e688-e696. PubMed ID: 30735871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.