These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32129916)

  • 21. Boosting the photocatalytic CO
    Li S; Ji K; Zhang M; He C; Wang J; Li Z
    Nanoscale; 2020 May; 12(17):9533-9540. PubMed ID: 32315014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts.
    Khan MM; Rahman A; Matussin SN
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of Plasmonic Effects and Schottky Junctions into Metal-Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis.
    Xiao JD; Han L; Luo J; Yu SH; Jiang HL
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1103-1107. PubMed ID: 29215207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO
    Li R; Zhang W; Zhou K
    Adv Mater; 2018 Aug; 30(35):e1705512. PubMed ID: 29894012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linker engineering in metal-organic frameworks for dark photocatalysis.
    Pan Y; Wang J; Chen S; Yang W; Ding C; Waseem A; Jiang HL
    Chem Sci; 2022 Jun; 13(22):6696-6703. PubMed ID: 35756526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into conduction band flexibility induced by spin polarization in titanium-based metal-organic frameworks for photocatalytic water splitting and pollutants degradation.
    Xu J; Lu L; Zhu C; Fang Q; Liu R; Wang D; He Z; Song S; Shen Y
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):430-442. PubMed ID: 36265344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bimetallic Porphyrin-Based Metal-Organic Framework as a Superior Photocatalyst for Enhanced Photocatalytic Hydrogen Production.
    Wang S; Li S; Zheng C; Feng H; Feng YS
    Inorg Chem; 2024 Jan; 63(1):554-563. PubMed ID: 38151237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency.
    Sun D; Kim DP
    ACS Appl Mater Interfaces; 2020 May; 12(18):20589-20595. PubMed ID: 32307981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Ti
    Yuan S; Qin JS; Xu HQ; Su J; Rossi D; Chen Y; Zhang L; Lollar C; Wang Q; Jiang HL; Son DH; Xu H; Huang Z; Zou X; Zhou HC
    ACS Cent Sci; 2018 Jan; 4(1):105-111. PubMed ID: 29392182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable Layered Semiconductive Cu(I)-Organic Framework for Efficient Visible-Light-Driven Cr(VI) Reduction and H
    Chen DM; Sun CX; Liu CS; Du M
    Inorg Chem; 2018 Jul; 57(13):7975-7981. PubMed ID: 29911863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large π-Conjugated Metal-Organic Frameworks for Infrared-Light-Driven CO
    Zeng JY; Wang XS; Xie BR; Li QR; Zhang XZ
    J Am Chem Soc; 2022 Jan; 144(3):1218-1231. PubMed ID: 35029380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Metal-Organic-Framework-Derived (Zn
    Liu J; Feng J; Lu L; Wu B; Ren P; Shi W; Cheng P
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10261-10267. PubMed ID: 32023414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient and Selective Visible-Light-Driven Oxidative Coupling of Amines to Imines in Air over CdS@Zr-MOFs.
    Gao K; Li H; Meng Q; Wu J; Hou H
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2779-2787. PubMed ID: 33410318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A.
    Lv SW; Liu JM; Li CY; Zhao N; Wang ZH; Wang S
    Chemosphere; 2020 Mar; 243():125378. PubMed ID: 31765898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Photocatalytic Activity of Ti-Based Metal-Organic Frameworks through Modulator Defect-Engineered Functionalization.
    Lázaro IA; Szalad H; Valiente P; Albero J; García H; Martí-Gastaldo C
    ACS Appl Mater Interfaces; 2022 May; 14(18):21007-21017. PubMed ID: 35482456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BiOI Particles Confined into Metal-Organic Framework NU-1000 for Valid Photocatalytic Hydrogen Evolution under Visible-Light Irradiation.
    Li X; Gao K; Mo B; Tang J; Wu J; Hou H
    Inorg Chem; 2021 Feb; 60(3):1352-1358. PubMed ID: 33476141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalysis and photocatalysis by metal organic frameworks.
    Dhakshinamoorthy A; Li Z; Garcia H
    Chem Soc Rev; 2018 Nov; 47(22):8134-8172. PubMed ID: 30003212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH
    Chambers MB; Wang X; Ellezam L; Ersen O; Fontecave M; Sanchez C; Rozes L; Mellot-Draznieks C
    J Am Chem Soc; 2017 Jun; 139(24):8222-8228. PubMed ID: 28535334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO
    Guo K; Hussain I; Jie GA; Fu Y; Zhang F; Zhu W
    J Environ Sci (China); 2023 Mar; 125():290-308. PubMed ID: 36375915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.