These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32130015)

  • 21. Tuning magnetism by biaxial strain in native ZnO.
    Peng C; Wang Y; Cheng Z; Zhang G; Wang C; Yang G
    Phys Chem Chem Phys; 2015 Jul; 17(25):16536-44. PubMed ID: 26051598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanol synthesis on ZnO(0001). I. Hydrogen coverage, charge state of oxygen vacancies, and chemical reactivity.
    Kiss J; Witt A; Meyer B; Marx D
    J Chem Phys; 2009 May; 130(18):184706. PubMed ID: 19449942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol.
    Guo Y; Guo X; Song C; Han X; Liu H; Zhao Z
    ChemSusChem; 2019 Nov; 12(22):4916-4926. PubMed ID: 31560446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methanol Synthesis Over Cu-ZnO-Al2O3 Catalyst at Low Pressure.
    Lee JH; Kim SW; Ahn BS; Moon DJ
    J Nanosci Nanotechnol; 2015 Jan; 15(1):400-3. PubMed ID: 26328369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy.
    Jin L; Wang Y
    Phys Chem Chem Phys; 2017 May; 19(20):12992-13001. PubMed ID: 28480918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-Ion Distribution and Oxygen Vacancies That Determine the Activity of Magnetically Recoverable Catalysts in Methanol Synthesis.
    Oracko T; Jaquish R; Losovyj YB; Morgan DG; Pink M; Stein BD; Doluda VY; Tkachenko OP; Shifrina ZB; Grigoriev ME; Sidorov AI; Sulman EM; Bronstein LM
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34005-34014. PubMed ID: 28910529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO.
    Yi JB; Lim CC; Xing GZ; Fan HM; Van LH; Huang SL; Yang KS; Huang XL; Qin XB; Wang BY; Wu T; Wang L; Zhang HT; Gao XY; Liu T; Wee AT; Feng YP; Ding J
    Phys Rev Lett; 2010 Apr; 104(13):137201. PubMed ID: 20481907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)
    Baek M; Kim D; Yong K
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2317-2325. PubMed ID: 28045250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A highly selective and stable ZnO-ZrO
    Wang J; Li G; Li Z; Tang C; Feng Z; An H; Liu H; Liu T; Li C
    Sci Adv; 2017 Oct; 3(10):e1701290. PubMed ID: 28989964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methanol synthesis via CO₂ hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process.
    Hartadi Y; Widmann D; Behm RJ
    Phys Chem Chem Phys; 2016 Apr; 18(16):10781-91. PubMed ID: 26923815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation.
    Martin O; Martín AJ; Mondelli C; Mitchell S; Segawa TF; Hauert R; Drouilly C; Curulla-Ferré D; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2016 May; 55(21):6261-5. PubMed ID: 26991730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al
    Laudenschleger D; Ruland H; Muhler M
    Nat Commun; 2020 Aug; 11(1):3898. PubMed ID: 32753573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu-ZnO catalysts in fixed-bed reactor.
    Gao Q; Xu B; Tong Q; Fan Y
    Biosci Biotechnol Biochem; 2016; 80(2):215-20. PubMed ID: 26428060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and unusual electron paramagnetic resonance spectrum of metastable nanoclusters of ZnO semiconductor crystallites.
    Ram S; Kundu TK
    J Nanosci Nanotechnol; 2004 Nov; 4(8):1076-80. PubMed ID: 15656206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review of the Two-Step H₂O/CO₂-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions.
    Loutzenhiser PG; Meier A; Steinfeld A
    Materials (Basel); 2010 Nov; 3(11):4922-4938. PubMed ID: 28883361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles.
    Sharma PK; Dutta RK; Pandey AC
    J Colloid Interface Sci; 2010 May; 345(2):149-53. PubMed ID: 20149385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.
    V LP; Vijayaraghavan R
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1027-1034. PubMed ID: 28531975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MgH
    Chen H; Liu P; Li J; Wang Y; She C; Liu J; Zhang L; Yang Q; Zhou S; Feng X
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31009-31017. PubMed ID: 31368295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.