BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32130223)

  • 1. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation.
    Brandis G; Hughes D
    PLoS Genet; 2020 Mar; 16(3):e1008615. PubMed ID: 32130223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive Selection during Niche Adaptation Results in Large-Scale and Irreversible Rearrangement of Chromosomal Gene Order in Bacteria.
    Cao S; Brandis G; Huseby DL; Hughes D
    Mol Biol Evol; 2022 Apr; 39(4):. PubMed ID: 35348727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
    Weigand MR; Peng Y; Loparev V; Batra D; Bowden KE; Burroughs M; Cassiday PK; Davis JK; Johnson T; Juieng P; Knipe K; Mathis MH; Pruitt AM; Rowe L; Sheth M; Tondella ML; Williams MM
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche.
    Miller SR; Wood AM; Blankenship RE; Kim M; Ferriera S
    Genome Biol Evol; 2011; 3():601-13. PubMed ID: 21697100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Second Chromosome Promotes the Adaptation of the Genus
    Feng Z; Zhang Z; Liu Y; Gu J; Cheng Y; Hu W; Li Y; Han W
    Microbiol Spectr; 2021 Dec; 9(3):e0098021. PubMed ID: 34878294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide detection of spontaneous chromosomal rearrangements in bacteria.
    Sun S; Ke R; Hughes D; Nilsson M; Andersson DI
    PLoS One; 2012; 7(8):e42639. PubMed ID: 22880062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms.
    Adler M; Anjum M; Berg OG; Andersson DI; Sandegren L
    Mol Biol Evol; 2014 Jun; 31(6):1526-35. PubMed ID: 24659815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rearrangement analysis of multiple bacterial genomes.
    Noureen M; Tada I; Kawashima T; Arita M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):631. PubMed ID: 31881830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders.
    Chong RA; Mueller RL
    BMC Genomics; 2017 Dec; 18(1):992. PubMed ID: 29281973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangement and evolution of mitochondrial genomes in parrots.
    Eberhard JR; Wright TF
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):34-46. PubMed ID: 26291569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting Signed Permutations by Inverse Tandem Duplication Random Losses.
    Hartmann T; Bannach M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2177-2188. PubMed ID: 31095495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes.
    Lin Y; Moret BM
    J Comput Biol; 2011 Sep; 18(9):1055-64. PubMed ID: 21899415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome.
    San Mauro D; Gower DJ; Zardoya R; Wilkinson M
    Mol Biol Evol; 2006 Jan; 23(1):227-34. PubMed ID: 16177229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Order and disorder in bacterial genomes.
    Rocha EP
    Curr Opin Microbiol; 2004 Oct; 7(5):519-27. PubMed ID: 15451508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tandem inversion duplication in Salmonella enterica: selection drives unstable precursors to final mutation types.
    Kugelberg E; Kofoid E; Andersson DI; Lu Y; Mellor J; Roth FP; Roth JR
    Genetics; 2010 May; 185(1):65-80. PubMed ID: 20215473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.
    Xu JH; Messing J
    Mol Plant; 2008 Sep; 1(5):760-9. PubMed ID: 19825579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of gene duplicates.
    Otto SP; Yong P
    Adv Genet; 2002; 46():451-83. PubMed ID: 11931235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating true evolutionary distances under rearrangements, duplications, and losses.
    Lin Y; Rajan V; Swenson KM; Moret BM
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S54. PubMed ID: 20122229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.