These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32130469)

  • 1. Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin.
    Yao X; Lv Y; Yu H; Cao H; Wang L; Wen B; Gu T; Wang F; Sun L; Xin F
    Appl Microbiol Biotechnol; 2020 May; 104(9):3897-3907. PubMed ID: 32130469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and long-term vanillin production from 4-vinylguaiacol using immobilized whole cells expressing Cso2 protein.
    Saito T; Aono R; Furuya T; Kino K
    J Biosci Bioeng; 2020 Sep; 130(3):260-264. PubMed ID: 32456985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.
    Furuya T; Miura M; Kuroiwa M; Kino K
    N Biotechnol; 2015 May; 32(3):335-9. PubMed ID: 25765579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological production of vanillin using immobilized enzymes.
    Furuya T; Kuroiwa M; Kino K
    J Biotechnol; 2017 Feb; 243():25-28. PubMed ID: 28042012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.
    Furuya T; Miura M; Kino K
    Chembiochem; 2014 Oct; 15(15):2248-54. PubMed ID: 25164030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Carotenoid Cleavage Oxygenase for Coenzyme-Free Synthesis of Vanillin from Ferulic Acid.
    Zheng R; Chen Q; Yang Q; Gong T; Hu CY; Meng Y
    J Agric Food Chem; 2024 May; 72(21):12209-12218. PubMed ID: 38751167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a coenzyme-independent dioxygenase for one-step production of vanillin from ferulic acid.
    Fujimaki S; Sakamoto S; Shimada S; Kino K; Furuya T
    Appl Environ Microbiol; 2024 Jun; 90(6):e0023324. PubMed ID: 38727223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.
    Di Gioia D; Luziatelli F; Negroni A; Ficca AG; Fava F; Ruzzi M
    J Biotechnol; 2011 Dec; 156(4):309-16. PubMed ID: 21875627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.
    Fleige C; Meyer F; Steinbüchel A
    Appl Environ Microbiol; 2016 Jun; 82(11):3410-3419. PubMed ID: 27037121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.
    Fleige C; Hansen G; Kroll J; Steinbüchel A
    Appl Environ Microbiol; 2013 Jan; 79(1):81-90. PubMed ID: 23064333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of vanillin by different microorganisms: a review.
    Ma Q; Liu L; Zhao S; Huang Z; Li C; Jiang S; Li Q; Gu P
    World J Microbiol Biotechnol; 2022 Jan; 38(3):40. PubMed ID: 35018518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis.
    Luo Q; Chen Y; Xia J; Wang KQ; Cai YJ; Liao XR; Guan ZB
    Enzyme Microb Technol; 2018 Feb; 109():11-19. PubMed ID: 29224621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Biosynthesis of Heliotropin by Engineered
    Wen P; Wu D; Zheng P; Chen P; Liu S; Fu Y
    J Agric Food Chem; 2019 Dec; 67(51):14121-14128. PubMed ID: 31775508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Novel Vanillin-Induced Autoregulating Bidirectional Transport System in a Vanillin-Producing
    Li Z; Sun L; Wang Y; Liu B; Xin F
    J Agric Food Chem; 2024 Jul; 72(26):14809-14820. PubMed ID: 38899780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
    Yang W; Tang H; Ni J; Wu Q; Hua D; Tao F; Xu P
    PLoS One; 2013; 8(6):e67339. PubMed ID: 23840666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis.
    Chen Y; Luo Q; Zhou W; Xie Z; Cai YJ; Liao XR; Guan ZB
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1935-1944. PubMed ID: 27826721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes.
    Chen QH; Xie DT; Qiang S; Hu CY; Meng YH
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):247-259. PubMed ID: 34893929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.
    Chakraborty D; Gupta G; Kaur B
    Protein Expr Purif; 2016 Dec; 128():123-33. PubMed ID: 27591788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin.
    van den Heuvel RH; van den Berg WA; Rovida S; van Berkel WJ
    J Biol Chem; 2004 Aug; 279(32):33492-500. PubMed ID: 15169773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.