These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32130746)

  • 1. A Universal Approach to Aqueous Energy Storage via Ultralow-Cost Electrolyte with Super-Concentrated Sugar as Hydrogen-Bond-Regulated Solute.
    Bi H; Wang X; Liu H; He Y; Wang W; Deng W; Ma X; Wang Y; Rao W; Chai Y; Ma H; Li R; Chen J; Wang Y; Xue M
    Adv Mater; 2020 Apr; 32(16):e2000074. PubMed ID: 32130746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system.
    Iamprasertkun P; Ejigu A; Dryfe RAW
    Chem Sci; 2020 Jun; 11(27):6978-6989. PubMed ID: 34122994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect.
    Yan C; Wang Y; Deng X; Xu Y
    Nanomicro Lett; 2022 Apr; 14(1):98. PubMed ID: 35394219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Water-in-Sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage.
    Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C
    Small; 2021 Oct; 17(40):e2102375. PubMed ID: 34499420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyimide-Based Aqueous Potassium Energy Storage Systems Using Concentrated WiSE Electrolyte.
    Vardhini G; Dilip PS; Kumar SA; Suriyakumar S; Hariharan M; Shaijumon MM
    ACS Appl Mater Interfaces; 2024 Jan; ():. PubMed ID: 38165729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage.
    Chua R; Cai Y; Lim PQ; Kumar S; Satish R; Manalastas W; Ren H; Verma V; Meng S; Morris SA; Kidkhunthod P; Bai J; Srinivasan M
    ACS Appl Mater Interfaces; 2020 May; 12(20):22862-22872. PubMed ID: 32343545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Water-In-Salt Electrolyte for Aqueous Lithium-Ion Batteries.
    Jaumaux P; Yang X; Zhang B; Safaei J; Tang X; Zhou D; Wang C; Wang G
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19965-19973. PubMed ID: 34185948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries.
    Wang Y; Meng X; Sun J; Liu Y; Hou L
    Front Chem; 2020; 8():595. PubMed ID: 32850632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors.
    Dong S; Wang Y; Chen C; Shen L; Zhang X
    Nanomicro Lett; 2020 Aug; 12(1):168. PubMed ID: 34138154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular crowding electrolytes for high-voltage aqueous batteries.
    Xie J; Liang Z; Lu YC
    Nat Mater; 2020 Sep; 19(9):1006-1011. PubMed ID: 32313263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries.
    Ding C; Chen Z; Cao C; Liu Y; Gao Y
    Nanomicro Lett; 2023 Aug; 15(1):192. PubMed ID: 37555908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations.
    Li CY; Chen M; Liu S; Lu X; Meng J; Yan J; Abruña HD; Feng G; Lian T
    Nat Commun; 2022 Sep; 13(1):5330. PubMed ID: 36088353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Chemistry in Aqueous Lithium-Ion Batteries: A Case Study of V
    Hou X; Zhang L; Gogoi N; Edström K; Berg EJ
    Small; 2024 Jun; 20(23):e2308577. PubMed ID: 38145960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries.
    Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C
    Small; 2022 Jun; 18(22):e2201449. PubMed ID: 35557499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes.
    Amiri M; Bélanger D
    ChemSusChem; 2021 Jun; 14(12):2487-2500. PubMed ID: 33973406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries.
    Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C
    Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.
    Suo L; Borodin O; Gao T; Olguin M; Ho J; Fan X; Luo C; Wang C; Xu K
    Science; 2015 Nov; 350(6263):938-43. PubMed ID: 26586759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.