These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32130854)

  • 21. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model.
    Sharma S; Sapkota D; Xue Y; Rajthala S; Yassin MA; Finne-Wistrand A; Mustafa K
    Stem Cell Res Ther; 2018 Jan; 9(1):23. PubMed ID: 29386057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.
    Chen W; Liu X; Chen Q; Bao C; Zhao L; Zhu Z; Xu HHK
    J Tissue Eng Regen Med; 2018 Jan; 12(1):191-203. PubMed ID: 28098961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate.
    Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y
    Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial progenitor cells improve the therapeutic effect of mesenchymal stem cell sheets on irradiated bone defect repair in a rat model.
    Liu H; Jiao Y; Zhou W; Bai S; Feng Z; Dong Y; Liu Q; Feng X; Zhao Y
    J Transl Med; 2018 May; 16(1):137. PubMed ID: 29788957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair.
    Li Y; Wang J; Wang Y; Du W; Wang S
    J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4.
    He Y; Yu L; Liu J; Li Y; Wu Y; Huang Z; Wu D; Wang H; Wu Z; Qiu G
    FASEB J; 2019 May; 33(5):6069-6081. PubMed ID: 30763124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RGD-functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation.
    Tahlawi A; Klontzas ME; Allenby MC; Morais JCF; Panoskaltsis N; Mantalaris A
    J Tissue Eng Regen Med; 2019 Feb; 13(2):232-243. PubMed ID: 30537385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration.
    Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis.
    Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF
    J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation.
    Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E
    Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: a pilot study on rats.
    Rentsch C; Rentsch B; Breier A; Spekl K; Jung R; Manthey S; Scharnweber D; Zwipp H; Biewener A
    J Biomed Mater Res A; 2010 Dec; 95(3):964-72. PubMed ID: 20824650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization.
    Wang C; Lu WW; Wang M
    J Mater Chem B; 2020 Jan; 8(4):636-647. PubMed ID: 31829384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo evaluation of MgF
    Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y
    Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model.
    Lee YC; Chan YH; Hsieh SC; Lew WZ; Feng SW
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.
    Xia Y; Zhou P; Wang F; Qiu C; Wang P; Zhang Y; Zhao L; Xu S
    Int J Nanomedicine; 2016; 11():3435-49. PubMed ID: 27555766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation.
    Zhang W; Zhu C; Wu Y; Ye D; Wang S; Zou D; Zhang X; Kaplan DL; Jiang X
    Eur Cell Mater; 2014 Jan; 27():1-11; discussion 11-2. PubMed ID: 24425156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue.
    Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ZnO/Nanocarbons-Modified Fibrous Scaffolds for Stem Cell-Based Osteogenic Differentiation.
    Xia Y; Fan X; Yang H; Li L; He C; Cheng C; Haag R
    Small; 2020 Sep; 16(38):e2003010. PubMed ID: 32815251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.