These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 32131813)
1. Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. Dunican DS; Mjoseng HK; Duthie L; Flyamer IM; Bickmore WA; Meehan RR BMC Biol; 2020 Mar; 18(1):25. PubMed ID: 32131813 [TBL] [Abstract][Full Text] [Related]
2. An annotated list of bivalent chromatin regions in human ES cells: a new tool for cancer epigenetic research. Court F; Arnaud P Oncotarget; 2017 Jan; 8(3):4110-4124. PubMed ID: 27926531 [TBL] [Abstract][Full Text] [Related]
3. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. Harikumar A; Meshorer E EMBO Rep; 2015 Dec; 16(12):1609-19. PubMed ID: 26553936 [TBL] [Abstract][Full Text] [Related]
4. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells. Xu J; Kidder BL BMC Genomics; 2018 Jul; 19(1):514. PubMed ID: 29969988 [TBL] [Abstract][Full Text] [Related]
5. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Mantsoki A; Devailly G; Joshi A Sci Rep; 2015 Nov; 5():16791. PubMed ID: 26582124 [TBL] [Abstract][Full Text] [Related]
6. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. King AD; Huang K; Rubbi L; Liu S; Wang CY; Wang Y; Pellegrini M; Fan G Cell Rep; 2016 Sep; 17(1):289-302. PubMed ID: 27681438 [TBL] [Abstract][Full Text] [Related]
7. A double take on bivalent promoters. Voigt P; Tee WW; Reinberg D Genes Dev; 2013 Jun; 27(12):1318-38. PubMed ID: 23788621 [TBL] [Abstract][Full Text] [Related]
8. Decoding the function of bivalent chromatin in development and cancer. Kumar D; Cinghu S; Oldfield AJ; Yang P; Jothi R Genome Res; 2021 Dec; 31(12):2170-2184. PubMed ID: 34667120 [TBL] [Abstract][Full Text] [Related]
9. Differences among brain tumor stem cell types and fetal neural stem cells in focal regions of histone modifications and DNA methylation, broad regions of modifications, and bivalent promoters. Yoo S; Bieda MC BMC Genomics; 2014 Aug; 15(1):724. PubMed ID: 25163646 [TBL] [Abstract][Full Text] [Related]
10. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Gu T; Lin X; Cullen SM; Luo M; Jeong M; Estecio M; Shen J; Hardikar S; Sun D; Su J; Rux D; Guzman A; Lee M; Qi LS; Chen JJ; Kyba M; Huang Y; Chen T; Li W; Goodell MA Genome Biol; 2018 Jul; 19(1):88. PubMed ID: 30001199 [TBL] [Abstract][Full Text] [Related]
11. Genes Predisposed to DNA Hypermethylation during Acquired Resistance to Chemotherapy Are Identified in Ovarian Tumors by Bivalent Chromatin Domains at Initial Diagnosis. Curry E; Zeller C; Masrour N; Patten DK; Gallon J; Wilhelm-Benartzi CS; Ghaem-Maghami S; Bowtell DD; Brown R Cancer Res; 2018 Mar; 78(6):1383-1391. PubMed ID: 29339543 [TBL] [Abstract][Full Text] [Related]
12. Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells. Kumar B; Elsässer SJ Cell Rep; 2019 Sep; 28(12):3274-3284.e5. PubMed ID: 31533047 [TBL] [Abstract][Full Text] [Related]
13. A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin. Seneviratne JA; Ho WWH; Glancy E; Eckersley-Maslin MA Epigenetics Chromatin; 2024 Feb; 17(1):3. PubMed ID: 38336688 [TBL] [Abstract][Full Text] [Related]
14. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Denissov S; Hofemeister H; Marks H; Kranz A; Ciotta G; Singh S; Anastassiadis K; Stunnenberg HG; Stewart AF Development; 2014 Feb; 141(3):526-37. PubMed ID: 24423662 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Grandy RA; Whitfield TW; Wu H; Fitzgerald MP; VanOudenhove JJ; Zaidi SK; Montecino MA; Lian JB; van Wijnen AJ; Stein JL; Stein GS Mol Cell Biol; 2016 Feb; 36(4):615-27. PubMed ID: 26644406 [TBL] [Abstract][Full Text] [Related]
16. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Hu D; Garruss AS; Gao X; Morgan MA; Cook M; Smith ER; Shilatifard A Nat Struct Mol Biol; 2013 Sep; 20(9):1093-7. PubMed ID: 23934151 [TBL] [Abstract][Full Text] [Related]
17. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development. Yu Y; Li X; Jiao R; Lu Y; Jiang X; Li X Cell Biosci; 2023 Mar; 13(1):66. PubMed ID: 36991495 [TBL] [Abstract][Full Text] [Related]
18. Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Putiri EL; Tiedemann RL; Liu C; Choi JH; Robertson KD Oncotarget; 2014 Aug; 5(15):6338-52. PubMed ID: 25071008 [TBL] [Abstract][Full Text] [Related]
19. Morphine leads to global genome changes in H3K27me3 levels via a Polycomb Repressive Complex 2 (PRC2) self-regulatory mechanism in mESCs. Muñoa-Hoyos I; Halsall JA; Araolaza M; Ward C; Garcia I; Urizar-Arenaza I; Gianzo M; Garcia P; Turner B; Subirán N Clin Epigenetics; 2020 Nov; 12(1):170. PubMed ID: 33168052 [TBL] [Abstract][Full Text] [Related]
20. DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Tan HK; Wu CS; Li J; Tan ZH; Hoffman JR; Fry CJ; Yang H; Di Ruscio A; Tenen DG Nucleic Acids Res; 2019 Aug; 47(14):7460-7475. PubMed ID: 31219573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]