These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32132217)

  • 21. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
    Engdahl SM; Christie BP; Kelly B; Davis A; Chestek CA; Gates DH
    J Neuroeng Rehabil; 2015 Jun; 12():53. PubMed ID: 26071402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building a Multidisciplinary Clinic Dedicated to Upper-Extremity Limb Loss.
    Kulkarni A; Luthringer M; Fried A; Mikosz M; Mauro J; Vella GR; Lally T; Shah A
    J Hand Surg Am; 2024 Mar; 49(3):267-274. PubMed ID: 38180409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surgical and technological advances in the management of upper limb amputees.
    Geary M; Gaston RG; Loeffler B
    Bone Joint J; 2021 Mar; 103-B(3):430-439. PubMed ID: 33641410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb.
    Jia X; Koenig MA; Zhang X; Zhang J; Chen T; Chen Z
    J Hand Surg Am; 2007; 32(5):657-66. PubMed ID: 17482005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 26. Fascicle-Specific Targeting of Longitudinal Intrafascicular Electrodes for Motor and Sensory Restoration in Upper-Limb Amputees.
    Cheng J; Yang Z; Overstreet CK; Keefer E
    Hand Clin; 2021 Aug; 37(3):401-414. PubMed ID: 34253313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Merging Humans and Neuroprosthetics through Regenerative Peripheral Nerve Interfaces.
    Tian Y; Vaskov AK; Adidharma W; Cederna PS; Kemp SWP
    Semin Plast Surg; 2024 Feb; 38(1):10-18. PubMed ID: 38495064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound appearance of regenerative peripheral nerve interface with clinical correlation.
    Morag Y; Ganesh Kumar N; Hamill JB; Cederna PS; Masotti M; Kemp SWP; Kung TA
    Skeletal Radiol; 2023 Jun; 52(6):1137-1157. PubMed ID: 36547677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regenerative peripheral nerve interface reduces the incidence of neuroma in the lower limbs after amputation: a retrospective study based on ultrasound.
    Lin Z; Yu P; Chen Z; Li G
    J Orthop Surg Res; 2023 Aug; 18(1):619. PubMed ID: 37620955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results.
    Dumanian GA; Ko JH; O'Shaughnessy KD; Kim PS; Wilson CJ; Kuiken TA
    Plast Reconstr Surg; 2009 Sep; 124(3):863-869. PubMed ID: 19730305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neural interface provides long-term stable natural touch perception.
    Tan DW; Schiefer MA; Keith MW; Anderson JR; Tyler J; Tyler DJ
    Sci Transl Med; 2014 Oct; 6(257):257ra138. PubMed ID: 25298320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vibrotactile detection thresholds for chest skin of amputees following targeted reinnervation surgery.
    Schultz AE; Marasco PD; Kuiken TA
    Brain Res; 2009 Jan; 1251():121-9. PubMed ID: 19059226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bioelectric neural interface towards intuitive prosthetic control for amputees.
    Nguyen AT; Xu J; Jiang M; Luu DK; Wu T; Tam WK; Zhao W; Drealan MW; Overstreet CK; Zhao Q; Cheng J; Keefer EW; Yang Z
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33091891
    [No Abstract]   [Full Text] [Related]  

  • 36. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees.
    Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soft Robotics Enables Neuroprosthetic Hand Design.
    Gu G; Zhang N; Chen C; Xu H; Zhu X
    ACS Nano; 2023 Jun; 17(11):9661-9672. PubMed ID: 37196348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low-cost, wearable sEMG sensor for upper limb prosthetic application.
    Prakash A; Kumari B; Sharma S
    J Med Eng Technol; 2019 May; 43(4):235-247. PubMed ID: 31414614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.