These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32132231)

  • 1. Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism.
    Gao XH; Li L; Parisien M; Wu J; Bederman I; Gao Z; Krokowski D; Chirieleison SM; Abbott D; Wang B; Arvan P; Cameron M; Chance M; Willard B; Hatzoglou M
    Mol Cell Proteomics; 2020 May; 19(5):852-870. PubMed ID: 32132231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Proteomic Mapping of Cysteine Persulfidation.
    Fu L; Liu K; He J; Tian C; Yu X; Yang J
    Antioxid Redox Signal; 2020 Nov; 33(15):1061-1076. PubMed ID: 31411056
    [No Abstract]   [Full Text] [Related]  

  • 3. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the redox metabolome and thiol proteome by hydrogen sulfide.
    Kumar R; Banerjee R
    Crit Rev Biochem Mol Biol; 2021 Jun; 56(3):221-235. PubMed ID: 33722121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells.
    Longen S; Richter F; Köhler Y; Wittig I; Beck KF; Pfeilschifter J
    Sci Rep; 2016 Jul; 6():29808. PubMed ID: 27411966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption.
    Harris PS; McGinnis CD; Michel CR; Marentette JO; Reisdorph R; Roede JR; Fritz KS
    Redox Biol; 2023 Aug; 64():102792. PubMed ID: 37390786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.
    Mishanina TV; Libiad M; Banerjee R
    Nat Chem Biol; 2015 Jul; 11(7):457-64. PubMed ID: 26083070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress.
    Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ
    Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Post-Translational Modifications: A Focus on Cysteine
    Bibli SI; Fleming I
    Antioxid Redox Signal; 2021 Dec; 35(18):1494-1514. PubMed ID: 34346251
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.
    Cuevasanta E; Lange M; Bonanata J; Coitiño EL; Ferrer-Sueta G; Filipovic MR; Alvarez B
    J Biol Chem; 2015 Nov; 290(45):26866-26880. PubMed ID: 26269587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of protein persulfidation in plants by the dimedone switch method.
    Aroca A; Jurado-Flores A; Filipovic MR; Gotor C; Romero LC
    Methods Enzymol; 2022; 676():385-402. PubMed ID: 36280359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persulfidation-based Modification of Cysteine Desulfhydrase and the NADPH Oxidase RBOHD Controls Guard Cell Abscisic Acid Signaling.
    Shen J; Zhang J; Zhou M; Zhou H; Cui B; Gotor C; Romero LC; Fu L; Yang J; Foyer CH; Pan Q; Shen W; Xie Y
    Plant Cell; 2020 Apr; 32(4):1000-1017. PubMed ID: 32024687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling.
    Ida T; Sawa T; Ihara H; Tsuchiya Y; Watanabe Y; Kumagai Y; Suematsu M; Motohashi H; Fujii S; Matsunaga T; Yamamoto M; Ono K; Devarie-Baez NO; Xian M; Fukuto JM; Akaike T
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7606-11. PubMed ID: 24733942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.