These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32132527)
1. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Shen G; Liu J; Wu HB; Xu P; Liu F; Tongsh C; Jiao K; Li J; Liu M; Cai M; Lemmon JP; Soloveichik G; Li H; Zhu J; Lu Y Nat Commun; 2020 Mar; 11(1):1191. PubMed ID: 32132527 [TBL] [Abstract][Full Text] [Related]
2. Durable High-Temperature Proton Exchange Membrane Fuel Cells Enabled by the Working-Temperature-Matching Palladium-Hydrogen Buffer Layer. Huang G; Li Y; Tao L; Huang Z; Kong Z; Xie C; Du S; Wang T; Wu Y; Liu Q; Zhang D; Lin J; Li M; Wang J; Zhang J; Lu S; Cheng Y; Wang S Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202215177. PubMed ID: 36308282 [TBL] [Abstract][Full Text] [Related]
3. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations. Jienkulsawad P; Chen YS; Arpornwichanop A Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825148 [TBL] [Abstract][Full Text] [Related]
4. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Whiston MM; Azevedo IL; Litster S; Whitefoot KS; Samaras C; Whitacre JF Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4899-4904. PubMed ID: 30804192 [TBL] [Abstract][Full Text] [Related]
5. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells. Cui X; Shi J; Wang Y; Chen Y; Zhang L; Hua Z ChemSusChem; 2014 Jan; 7(1):135-45. PubMed ID: 24382829 [TBL] [Abstract][Full Text] [Related]
6. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975 [TBL] [Abstract][Full Text] [Related]
7. A Universal Strategy to Enhance Polarization Performance and Anode Reversal Tolerance by Polyaniline-Coated Carbon Support for Proton Exchange Membrane Fuel Cells. Li Z; Mu Y; Zhang Q; Xiao C; Jiang Y; Du L; Ye S; Zhao T; Zeng L Adv Sci (Weinh); 2024 Nov; 11(44):e2407570. PubMed ID: 39352320 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Voltage Reversal Tolerance of Proton Exchange Membrane Fuel Cells by Tuning the Microstructure of IrO Wang Y; Jiang Y; Liao J; Li Z; Zhao T; Zeng L ACS Appl Mater Interfaces; 2022 Dec; 14(51):56867-56876. PubMed ID: 36523167 [TBL] [Abstract][Full Text] [Related]
9. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells. Xue Y; Shi L; Liu X; Fang J; Wang X; Setzler BP; Zhu W; Yan Y; Zhuang Z Nat Commun; 2020 Nov; 11(1):5651. PubMed ID: 33159046 [TBL] [Abstract][Full Text] [Related]
10. Recent Advanced Synthesis Strategies for the Nanomaterial-Modified Proton Exchange Membrane in Fuel Cells. Chandra Kishore S; Perumal S; Atchudan R; Alagan M; Wadaan MA; Baabbad A; Manoj D Membranes (Basel); 2023 Jun; 13(6):. PubMed ID: 37367794 [TBL] [Abstract][Full Text] [Related]
11. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479 [TBL] [Abstract][Full Text] [Related]
12. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell. Schiavetti P; Del Prete Z Rev Sci Instrum; 2007 Aug; 78(8):085107. PubMed ID: 17764355 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Nafion/CeO Choi J; Yeon JH; Yook SH; Shin S; Kim JY; Choi M; Jang S ACS Appl Mater Interfaces; 2021 Jan; 13(1):806-815. PubMed ID: 33393284 [TBL] [Abstract][Full Text] [Related]
14. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Haider R; Wen Y; Ma ZF; Wilkinson DP; Zhang L; Yuan X; Song S; Zhang J Chem Soc Rev; 2021 Jan; 50(2):1138-1187. PubMed ID: 33245736 [TBL] [Abstract][Full Text] [Related]
15. Improved Reversal Tolerant Properties of IrO Liao J; Zaman S; Wang Y; Yang M; Yang L; Chen M; Wang H ACS Appl Mater Interfaces; 2023 Jan; 15(3):4092-4100. PubMed ID: 36625719 [TBL] [Abstract][Full Text] [Related]
16. Enhancing durability of automotive fuel cells via selective electrical conductivity induced by tungsten oxide layer coated directly on membrane electrode assembly. You SH; Jung SM; Park J; Kim J; Kim JK; Son J; Kim YT Sci Adv; 2023 Sep; 9(39):eadi5696. PubMed ID: 37756401 [TBL] [Abstract][Full Text] [Related]
17. Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells. Bermúdez Agudelo MC; Hampe M; Reiber T; Abele E Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370006 [TBL] [Abstract][Full Text] [Related]
18. Research on the Performance of Self-Made Open-Cathode Fuel Cell Stacks under Different Operating Conditions. Bai Q; Liu Z; Hsieh C Membranes (Basel); 2023 Nov; 13(11):. PubMed ID: 37999367 [TBL] [Abstract][Full Text] [Related]
19. Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells. Zhao J; Liu H; Li X Electrochem Energ Rev; 2023; 6(1):13. PubMed ID: 37007279 [TBL] [Abstract][Full Text] [Related]
20. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]