These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32132536)

  • 61. Engineered Control of Genetic Variability Reveals Interplay among Quorum Sensing, Feedback Regulation, and Biochemical Noise.
    Boada Y; Vignoni A; Picó J
    ACS Synth Biol; 2017 Oct; 6(10):1903-1912. PubMed ID: 28581725
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Morphology engineering: a new strategy to construct microbial cell factories.
    Huo K; Zhao F; Zhang F; Liu R; Yang C
    World J Microbiol Biotechnol; 2020 Jul; 36(9):127. PubMed ID: 32712725
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bioengineering microbial communities: Their potential to help, hinder and disgust.
    Sivasubramaniam D; Franks AE
    Bioengineered; 2016 Apr; 7(3):137-44. PubMed ID: 27221461
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology.
    McCarty NS; Ledesma-Amaro R
    Trends Biotechnol; 2019 Feb; 37(2):181-197. PubMed ID: 30497870
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bacterial genome engineering and synthetic biology: combating pathogens.
    Krishnamurthy M; Moore RT; Rajamani S; Panchal RG
    BMC Microbiol; 2016 Nov; 16(1):258. PubMed ID: 27814687
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.
    Bober JR; Beisel CL; Nair NU
    Annu Rev Biomed Eng; 2018 Jun; 20():277-300. PubMed ID: 29528686
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response.
    Sahari A; Traore MA; Stevens AM; Scharf BE; Behkam B
    Anal Chem; 2014 Dec; 86(23):11489-93. PubMed ID: 25369913
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthetic microbial consortia: from systematic analysis to construction and applications.
    Song H; Ding MZ; Jia XQ; Ma Q; Yuan YJ
    Chem Soc Rev; 2014; 43(20):6954-81. PubMed ID: 25017039
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents.
    Bacha K; Tariku Y; Gebreyesus F; Zerihun S; Mohammed A; Weiland-Bräuer N; Schmitz RA; Mulat M
    BMC Microbiol; 2016 Jul; 16(1):139. PubMed ID: 27400878
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli.
    Tsao CY; Hooshangi S; Wu HC; Valdes JJ; Bentley WE
    Metab Eng; 2010 May; 12(3):291-7. PubMed ID: 20060924
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The RNPP family of quorum-sensing proteins in Gram-positive bacteria.
    Rocha-Estrada J; Aceves-Diez AE; Guarneros G; de la Torre M
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):913-23. PubMed ID: 20502894
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering motility as a phenotypic response to LuxI/R-dependent quorum sensing in Escherichia coli.
    Weiss LE; Badalamenti JP; Weaver LJ; Tascone AR; Weiss PS; Richard TL; Cirino PC
    Biotechnol Bioeng; 2008 Aug; 100(6):1251-5. PubMed ID: 18553406
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of small RNAs in quorum sensing.
    Bejerano-Sagie M; Xavier KB
    Curr Opin Microbiol; 2007 Apr; 10(2):189-98. PubMed ID: 17387037
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rational engineering of synthetic microbial systems: from single cells to consortia.
    Bittihn P; Din MO; Tsimring LS; Hasty J
    Curr Opin Microbiol; 2018 Oct; 45():92-99. PubMed ID: 29574330
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota.
    Guan C; Ju J; Borlee BR; Williamson LL; Shen B; Raffa KF; Handelsman J
    Appl Environ Microbiol; 2007 Jun; 73(11):3669-76. PubMed ID: 17435000
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetically programmable pathogen sense and destroy.
    Gupta S; Bram EE; Weiss R
    ACS Synth Biol; 2013 Dec; 2(12):715-23. PubMed ID: 23763381
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Controlling biofilms using synthetic biology approaches.
    Fang K; Park OJ; Hong SH
    Biotechnol Adv; 2020; 40():107518. PubMed ID: 31953206
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Attenuation of adhesion, quorum sensing and biofilm mediated virulence of carbapenem resistant Escherichia coli by selected natural plant products.
    Thakur P; Chawla R; Tanwar A; Chakotiya AS; Narula A; Goel R; Arora R; Sharma RK
    Microb Pathog; 2016 Mar; 92():76-85. PubMed ID: 26792674
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Programming Surface Chemistry with Engineered Cells.
    Zhang R; Heyde KC; Scott FY; Paek SH; Ruder WC
    ACS Synth Biol; 2016 Sep; 5(9):936-41. PubMed ID: 27203116
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cephalopod-inspired optical engineering of human cells.
    Chatterjee A; Cerna Sanchez JA; Yamauchi T; Taupin V; Couvrette J; Gorodetsky AA
    Nat Commun; 2020 Jun; 11(1):2708. PubMed ID: 32488070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.