These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32132576)

  • 61. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2.
    Feng Z; Rütting T; Pleijel H; Wallin G; Reich PB; Kammann CI; Newton PC; Kobayashi K; Luo Y; Uddling J
    Glob Chang Biol; 2015 Aug; 21(8):3152-68. PubMed ID: 25846203
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses.
    Paudel Timilsena B; Seidl-Adams I; Tumlinson JH
    Plant Cell Environ; 2020 Mar; 43(3):787-800. PubMed ID: 31759336
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Jasmonic Acid Oxidase 2 Hydroxylates Jasmonic Acid and Represses Basal Defense and Resistance Responses against Botrytis cinerea Infection.
    Smirnova E; Marquis V; Poirier L; Aubert Y; Zumsteg J; Ménard R; Miesch L; Heitz T
    Mol Plant; 2017 Sep; 10(9):1159-1173. PubMed ID: 28760569
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata.
    Yang DH; Baldwin IT; Wu J
    J Integr Plant Biol; 2013 Jun; 55(6):514-26. PubMed ID: 23347255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biochemical and pharmaceutical traits of
    AbdElgawad H; Magdy Korany S; Hagagy N; Yaghoubi Khanghahi M; Reyad AM; Crecchio C; Zakri AM; Alsherif EA; Bakkar MR
    3 Biotech; 2023 Dec; 13(12):412. PubMed ID: 37997597
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ralstonia solanacearum Type III Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants.
    Nakano M; Mukaihara T
    Plant Cell Physiol; 2018 Dec; 59(12):2576-2589. PubMed ID: 30165674
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco
    Yang T; Zhu LS; Meng Y; Lv R; Zhou Z; Zhu L; Lin HH; Xi DH
    J Plant Physiol; 2018 Apr; 223():116-126. PubMed ID: 29574244
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.
    Zhu F; Xi DH; Yuan S; Xu F; Zhang DW; Lin HH
    Mol Plant Microbe Interact; 2014 Jun; 27(6):567-77. PubMed ID: 24450774
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants.
    Gordy JW; Leonard BR; Blouin D; Davis JA; Stout MJ
    PLoS One; 2015; 10(9):e0136689. PubMed ID: 26332833
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Induction of 2-cyanoethyl-isoxazolin-5-one as an antifeedant against the tobacco cutworm (
    Tebayashi S; Moriyama R; Arakawa R; Sato M
    Biosci Biotechnol Biochem; 2020 Jun; 84(6):1105-1112. PubMed ID: 32013735
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea.
    Srinivasa Rao M; Manimanjari D; Vanaja M; Rama Rao CA; Srinivas K; Rao VU; Venkateswarlu B
    J Insect Sci; 2012; 12():103. PubMed ID: 23437971
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration.
    Kumagai E; Aoki N; Masuya Y; Shimono H
    Plant Physiol; 2015 Nov; 169(3):2021-9. PubMed ID: 26373658
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths.
    Zong N; Wang CZ
    Planta; 2007 Jun; 226(1):215-24. PubMed ID: 17216231
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of Elevated CO
    Bede JC; Blande JD
    Annu Rev Entomol; 2024 Oct; ():. PubMed ID: 39357072
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of Elevated CO
    AbdElgawad H; Okla MK; Al-Amri SS; Al-Hashimi A; Al-Qahtani WH; Al-Qahtani SM; Abbas ZK; Al-Harbi NA; Abd Algafar A; Almuhayawi MS; Selim S; Abdel-Mawgoud M
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834797
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elevated CO
    Sheteiwy MS; Basit F; El-Keblawy A; Jośko I; Abbas S; Yang H; Korany SM; Alsherif EA; Dawood MFA; AbdElgawad H
    Physiol Plant; 2023; 175(5):e14036. PubMed ID: 37882304
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits?
    Smith F; Luna E
    Biochem J; 2023 Nov; 480(22):1791-1804. PubMed ID: 37975605
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Elevated atmospheric CO
    Bernauer OM; Jain A; de Bivort B; Holbrook NM; Myers SS; Ziska LH; Crall JD
    Sci Rep; 2024 Jun; 14(1):13760. PubMed ID: 38877021
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Elevated atmospheric CO
    Zhou J; Gao Y; Wang J; Liu C; Wang Z; Lv M; Zhang X; Zhou Y; Dong G; Wang Y; Huang J; Hui D; Yang Z; Yao Y
    Plant Environ Interact; 2021 Jun; 2(3):125-136. PubMed ID: 37283862
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Alotaibi MO; Khamis G; AbdElgawad H; Mohammed AE; Sheteiwy MS; Elobeid MM; Saleh AM
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.