These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Ralstonia solanacearum Type III Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants. Nakano M; Mukaihara T Plant Cell Physiol; 2018 Dec; 59(12):2576-2589. PubMed ID: 30165674 [TBL] [Abstract][Full Text] [Related]
67. Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobacco Yang T; Zhu LS; Meng Y; Lv R; Zhou Z; Zhu L; Lin HH; Xi DH J Plant Physiol; 2018 Apr; 223():116-126. PubMed ID: 29574244 [TBL] [Abstract][Full Text] [Related]
68. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Zhu F; Xi DH; Yuan S; Xu F; Zhang DW; Lin HH Mol Plant Microbe Interact; 2014 Jun; 27(6):567-77. PubMed ID: 24450774 [TBL] [Abstract][Full Text] [Related]
69. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants. Gordy JW; Leonard BR; Blouin D; Davis JA; Stout MJ PLoS One; 2015; 10(9):e0136689. PubMed ID: 26332833 [TBL] [Abstract][Full Text] [Related]
70. Induction of 2-cyanoethyl-isoxazolin-5-one as an antifeedant against the tobacco cutworm ( Tebayashi S; Moriyama R; Arakawa R; Sato M Biosci Biotechnol Biochem; 2020 Jun; 84(6):1105-1112. PubMed ID: 32013735 [TBL] [Abstract][Full Text] [Related]
71. Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Srinivasa Rao M; Manimanjari D; Vanaja M; Rama Rao CA; Srinivas K; Rao VU; Venkateswarlu B J Insect Sci; 2012; 12():103. PubMed ID: 23437971 [TBL] [Abstract][Full Text] [Related]
72. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration. Kumagai E; Aoki N; Masuya Y; Shimono H Plant Physiol; 2015 Nov; 169(3):2021-9. PubMed ID: 26373658 [TBL] [Abstract][Full Text] [Related]
73. Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths. Zong N; Wang CZ Planta; 2007 Jun; 226(1):215-24. PubMed ID: 17216231 [TBL] [Abstract][Full Text] [Related]
74. Effects of Elevated CO Bede JC; Blande JD Annu Rev Entomol; 2024 Oct; ():. PubMed ID: 39357072 [TBL] [Abstract][Full Text] [Related]
75. Effect of Elevated CO AbdElgawad H; Okla MK; Al-Amri SS; Al-Hashimi A; Al-Qahtani WH; Al-Qahtani SM; Abbas ZK; Al-Harbi NA; Abd Algafar A; Almuhayawi MS; Selim S; Abdel-Mawgoud M Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834797 [TBL] [Abstract][Full Text] [Related]
76. Elevated CO Sheteiwy MS; Basit F; El-Keblawy A; Jośko I; Abbas S; Yang H; Korany SM; Alsherif EA; Dawood MFA; AbdElgawad H Physiol Plant; 2023; 175(5):e14036. PubMed ID: 37882304 [TBL] [Abstract][Full Text] [Related]
77. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Smith F; Luna E Biochem J; 2023 Nov; 480(22):1791-1804. PubMed ID: 37975605 [TBL] [Abstract][Full Text] [Related]
79. Elevated atmospheric CO Zhou J; Gao Y; Wang J; Liu C; Wang Z; Lv M; Zhang X; Zhou Y; Dong G; Wang Y; Huang J; Hui D; Yang Z; Yao Y Plant Environ Interact; 2021 Jun; 2(3):125-136. PubMed ID: 37283862 [TBL] [Abstract][Full Text] [Related]