These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32132897)

  • 1. Acoustic Change Responses to Amplitude Modulation in Cochlear Implant Users: Relationships to Speech Perception.
    Han JH; Dimitrijevic A
    Front Neurosci; 2020; 14():124. PubMed ID: 32132897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory cortical activity to different voice onset times in cochlear implant users.
    Han JH; Zhang F; Kadis DS; Houston LM; Samy RN; Smith ML; Dimitrijevic A
    Clin Neurophysiol; 2016 Feb; 127(2):1603-1617. PubMed ID: 26616545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Acoustic Change Complex Compared to Hearing Performance in Unilaterally and Bilaterally Deaf Cochlear Implant Users.
    van Heteren JAA; Vonck BMD; Stokroos RJ; Versnel H; Lammers MJW
    Ear Hear; 2022 Nov-Dec 01; 43(6):1783-1799. PubMed ID: 35696186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry.
    Han JH; Dimitrijevic A
    Front Neurosci; 2015; 9():38. PubMed ID: 25717291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-Induced Change of Cortical Temporal Processing in Cochlear Implant Users.
    Han JH; Lee J; Lee HJ
    Clin Exp Otorhinolaryngol; 2020 Aug; 13(3):241-248. PubMed ID: 31902201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within- and across-frequency temporal processing and speech perception in cochlear implant users.
    Blankenship CM; Meinzen-Derr J; Zhang F
    PLoS One; 2022; 17(10):e0275772. PubMed ID: 36227872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude Modulation Detection and Speech Recognition in Late-Implanted Prelingually and Postlingually Deafened Cochlear Implant Users.
    De Ruiter AM; Debruyne JA; Chenault MN; Francart T; Brokx JP
    Ear Hear; 2015; 36(5):557-66. PubMed ID: 25851075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Acoustic Change Complex in Response to Frequency Changes and Its Correlation to Cochlear Implant Speech Outcomes.
    McGuire K; Firestone GM; Zhang N; Zhang F
    Front Hum Neurosci; 2021; 15():757254. PubMed ID: 34744668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth matters - Towards finding an objective neurophysiological measure of behavioral amplitude modulation detection based on neural threshold determination.
    Waechter SM; Lopez Valdes A; Simoes-Franklin C; Viani L; Reilly RB
    Hear Res; 2018 Mar; 359():13-22. PubMed ID: 29291949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study.
    Finke M; Büchner A; Ruigendijk E; Meyer M; Sandmann P
    Neuropsychologia; 2016 Jul; 87():169-181. PubMed ID: 27212057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users.
    Luo X; Fu QJ; Wei CG; Cao KL
    Ear Hear; 2008 Dec; 29(6):957-70. PubMed ID: 18818548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.
    Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ
    Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustically evoked auditory change complex in children with auditory neuropathy spectrum disorder: a potential objective tool for identifying cochlear implant candidates.
    He S; Grose JH; Teagle HF; Woodard J; Park LR; Hatch DR; Roush P; Buchman CA
    Ear Hear; 2015; 36(3):289-301. PubMed ID: 25422994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship Between the Ability to Detect Frequency Changes or Temporal Gaps and Speech Perception Performance in Post-lingual Cochlear Implant Users.
    Xie D; Luo J; Chao X; Li J; Liu X; Fan Z; Wang H; Xu L
    Front Neurosci; 2022; 16():904724. PubMed ID: 35757528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures.
    Firszt JB; Chambers And RD; Kraus N
    Ear Hear; 2002 Dec; 23(6):516-31. PubMed ID: 12476089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of aging on speech perception in noise: comparison between normal-hearing and cochlear-implant listeners.
    Jin SH; Liu C; Sladen DP
    J Am Acad Audiol; 2014; 25(7):656-65. PubMed ID: 25365368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to dynamically control unwanted loudness cues when measuring amplitude modulation detection in cochlear implant users.
    Galvin JJ; Fu QJ; Oba S; Başkent D
    J Neurosci Methods; 2014 Jan; 222():207-12. PubMed ID: 24269251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Users.
    Blankenship C; Zhang F; Keith R
    J Am Acad Audiol; 2016 Oct; 27(9):701-713. PubMed ID: 27718347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users.
    Won JH; Moon IJ; Jin S; Park H; Woo J; Cho YS; Chung WH; Hong SH
    PLoS One; 2015; 10(10):e0140920. PubMed ID: 26485715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.