These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32132917)

  • 1. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation.
    Zuo S; Li J; Dong M; Zhou X; Fan W; Kong Y
    Front Neurorobot; 2020; 14():9. PubMed ID: 32132917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology.
    Liao Z; Yao L; Lu Z; Zhang J
    Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR).
    Zhang L; Li J; Dong M; Fang B; Cui Y; Zuo S; Zhang K
    J Healthc Eng; 2019; 2019():4164790. PubMed ID: 31001407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation].
    Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation.
    Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H
    Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434
    [No Abstract]   [Full Text] [Related]  

  • 9. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Analysis of a Flexible, Elastic, and Rope-Driven Parallel Mechanism for Wrist Rehabilitation.
    Pang Z; Wang T; Yu J; Liu S; Zhang X; Jiang D
    Appl Bionics Biomech; 2020; 2020():8841400. PubMed ID: 33273965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot.
    Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Ankle Robots in Post-stroke Rehabilitation of Gait: A Systematic Review.
    Shi B; Chen X; Yue Z; Yin S; Weng Q; Zhang X; Wang J; Wen W
    Front Neurorobot; 2019; 13():63. PubMed ID: 31456681
    [No Abstract]   [Full Text] [Related]  

  • 15. Spherical mechanism analysis of a surgical robot for minimally invasive surgery -- analytical and experimental approaches.
    Rosen J; Lum M; Trimble D; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2005; 111():422-8. PubMed ID: 15718772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.
    Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.
    Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic Calibration of a Cable-Driven Parallel Robot for 3D Printing.
    Qian S; Bao K; Zi B; Wang N
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.