These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32133467)

  • 1. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations.
    Gupta R; Badhe Y; Mitragotri S; Rai B
    Nanoscale; 2020 Mar; 12(11):6318-6333. PubMed ID: 32133467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.
    Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S
    J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop.
    Song B; Yuan H; Pham SV; Jameson CJ; Murad S
    Langmuir; 2012 Dec; 28(49):16989-7000. PubMed ID: 23171434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage.
    Oroskar PA; Jameson CJ; Murad S
    Langmuir; 2015 Jan; 31(3):1074-85. PubMed ID: 25549137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating collective translocation of nanoparticles across the skin lipid matrix: a molecular dynamics study.
    Badhe Y; Sharma P; Gupta R; Rai B
    Nanoscale Adv; 2023 Mar; 5(7):1978-1989. PubMed ID: 36998645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery.
    Gupta R; Rai B
    Methods Mol Biol; 2020; 2059():225-237. PubMed ID: 31435925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles.
    Ren T; Wang Q; Xu Y; Cong L; Gou J; Tao X; Zhang Y; He H; Yin T; Zhang H; Zhang Y; Tang X
    J Control Release; 2018 Jan; 269():423-438. PubMed ID: 29133120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials.
    Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S
    J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study.
    Erimban S; Daschakraborty S
    Phys Chem Chem Phys; 2020 Mar; 22(11):6335-6350. PubMed ID: 32134073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of nanoparticle permeation through a lipid membrane.
    Fiedler SL; Violi A
    Biophys J; 2010 Jul; 99(1):144-52. PubMed ID: 20655842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-silico design of nanoparticles for transdermal drug delivery application.
    Gupta R; Rai B
    Nanoscale; 2018 Mar; 10(10):4940-4951. PubMed ID: 29485168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation study of translocation of fullerene C
    Gupta R; Rai B
    Nanoscale; 2017 Mar; 9(12):4114-4127. PubMed ID: 28280822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes.
    Su CF; Merlitz H; Rabbel H; Sommer JU
    J Phys Chem Lett; 2017 Sep; 8(17):4069-4076. PubMed ID: 28797162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the Time of Entry of Nanoparticles in Lipid Membranes.
    Liu C; Elvati P; Majumder S; Wang Y; Liu AP; Violi A
    ACS Nano; 2019 Sep; 13(9):10221-10232. PubMed ID: 31401835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments.
    Gupta KM; Das S; Chow PS
    Nanoscale; 2021 Aug; 13(30):12916-12928. PubMed ID: 34477775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.