These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32133638)

  • 1. Sensory systems in birds: What we have learned from studying sensory specialists.
    Iwaniuk AN; Wylie DR
    J Comp Neurol; 2020 Dec; 528(17):2902-2918. PubMed ID: 32133638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The independent evolution of the enlargement of the principal sensory nucleus of the trigeminal nerve in three different groups of birds.
    Gutiérrez-Ibáñez C; Iwaniuk AN; Wylie DR
    Brain Behav Evol; 2009; 74(4):280-94. PubMed ID: 20051684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wulst efferents in the little owl Athene noctua: an investigation of projections to the optic tectum.
    Casini G; Porciatti V; Fontanesi G; Bagnoli P
    Brain Behav Evol; 1992; 39(2):101-15. PubMed ID: 1555108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds.
    Iwaniuk AN; Heesy CP; Hall MI; Wylie DR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):267-82. PubMed ID: 18071712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway.
    Bagnoli P; Fontanesi G; Casini G; Porciatti V
    Brain Behav Evol; 1990; 35(1):31-9. PubMed ID: 2340413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in touch representation in the hummingbird and zebra finch forebrain.
    Gaede AH; Wu PH; Leitch DB
    Curr Biol; 2024 Jun; 34(12):2739-2747.e3. PubMed ID: 38815578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds.
    Wylie DR; Gutiérrez-Ibáñez C; Iwaniuk AN
    Front Neurosci; 2015; 9():281. PubMed ID: 26321905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology.
    Keirnan A; Worthy TH; Smaers JB; Mardon K; Iwaniuk AN; Weisbecker V
    R Soc Open Sci; 2022 May; 9(5):220135. PubMed ID: 35620001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry.
    Masino T
    Brain Behav Evol; 1992; 40(2-3):98-111. PubMed ID: 1422810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light conditions and the evolution of the visual system in birds.
    Fröhlich A; Ducatez S; Neˇmec P; Sol D
    Evolution; 2024 Jul; 78(7):1237-1247. PubMed ID: 38558240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent evolution of visual and electrosensory specializations in different lineages of mormyrid electric fishes.
    Stevens JA; Sukhum KV; Carlson BA
    Brain Behav Evol; 2013; 82(3):185-98. PubMed ID: 24192131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive ornithology: the evolution of avian intelligence.
    Emery NJ
    Philos Trans R Soc Lond B Biol Sci; 2006 Jan; 361(1465):23-43. PubMed ID: 16553307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of stereopsis and the Wulst in caprimulgiform birds: A comparative analysis.
    Iwaniuk AN; Wylie DR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1313-26. PubMed ID: 16944165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual wulst-optic tectum relationships in birds: a comparison with the mammalian corticotectal system.
    Bagnoli P; Francesconi W; Magni F
    Arch Ital Biol; 1982 May; 120(1-3):212-35. PubMed ID: 7138181
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolution and diversity in avian vocal system: an Evo-Devo model from the morphological and behavioral perspectives.
    Matsunaga E; Okanoya K
    Dev Growth Differ; 2009 Apr; 51(3):355-67. PubMed ID: 19222524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian behavioural neuroscience: past, present and future perspectives.
    Hodos W
    Behav Brain Res; 1999 Feb; 98(2):181-2. PubMed ID: 10683105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colour, vision and coevolution in avian brood parasitism.
    Stoddard MC; Hauber ME
    Philos Trans R Soc Lond B Biol Sci; 2017 Jul; 372(1724):. PubMed ID: 28533456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taking an insect-inspired approach to bird navigation.
    Pritchard DJ; Healy SD
    Learn Behav; 2018 Mar; 46(1):7-22. PubMed ID: 29484541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
    Kurochkin EN; Dyke GJ; Saveliev SV; Pervushov EM; Popov EV
    Biol Lett; 2007 Jun; 3(3):309-13. PubMed ID: 17426009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.