BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32133654)

  • 1. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcutaneous energy transfer system performance evaluation.
    Mussivand T; Miller JA; Santerre PJ; Belanger G; Rajagopalan KC; Hendry PJ; Masters RG; Holmes KS; Robichaud R; Keaney M
    Artif Organs; 1993 Nov; 17(11):940-7. PubMed ID: 8110063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive component selection for TET powered medical devices.
    Leung HY; Budgett DM; Hu P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2913-6. PubMed ID: 22254950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.
    Wang JX; Smith JR; Bonde P
    Ann Thorac Surg; 2014 Apr; 97(4):1467-74. PubMed ID: 24530103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety considerations for wireless delivery of continuous power to implanted medical devices.
    Lucke L; Bluvshtein V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():286-9. PubMed ID: 25569953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results.
    Karim ML; Bosnjak AM; McLaughlin J; Crawford P; McEneaney D; Escalona OJ
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoratec transcutaneous energy transformer system: a review and update.
    Rintoul TC; Dolgin A
    ASAIO J; 2004; 50(4):397-400. PubMed ID: 15307556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study of a TET System for Implantable Biomedical Devices.
    Dissanayake TD; Hu AP; Malpas S; Bennet L; Taberner A; Booth L; Budgett D
    IEEE Trans Biomed Circuits Syst; 2009 Dec; 3(6):370-8. PubMed ID: 23853284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic algorithm optimization of transcutaneous energy transmission systems for implantable ventricular assist devices.
    Byron K; Bluvshtein V; Lucke L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():659-62. PubMed ID: 24109773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems of conductive skin for power transfer in clinical applications.
    Kourouklis AP; Kaemmel J; Wu X; Potapov E; Cesarovic N; Ferrari A; Starck C; Falk V; Mazza E
    Eur Biophys J; 2022 Mar; 51(2):171-184. PubMed ID: 34477935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downsizing of coreless coils for transcutaneous energy transmission in implantable devices - improvement of coupling factor and efficiency between coils.
    Seshimo T; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1871-4. PubMed ID: 24110076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.