These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 32133700)
1. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site-directed mutagenesis. Li S; Yang Q; Tang B Biotechnol Appl Biochem; 2020 Jul; 67(4):677-684. PubMed ID: 32133700 [TBL] [Abstract][Full Text] [Related]
2. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design]. Yang Q; Tang B; Li S Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310 [TBL] [Abstract][Full Text] [Related]
3. Improvement of enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286. Li S; Yang Q; Tang B; Chen A Enzyme Microb Technol; 2018 Oct; 117():96-102. PubMed ID: 30037559 [TBL] [Abstract][Full Text] [Related]
4. Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production. Aleem B; Rashid MH; Zeb N; Saqib A; Ihsan A; Iqbal M; Ali H BMC Microbiol; 2018 Nov; 18(1):200. PubMed ID: 30486793 [TBL] [Abstract][Full Text] [Related]
5. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris. He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598 [TBL] [Abstract][Full Text] [Related]
6. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Ghollasi M; Ghanbari-Safari M; Khajeh K Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the Thermostability and Catalytic Activity of the Lipase from Wang Y; Wang Z; Yu H; Teng H; Wu J; Xu J; Yang L J Agric Food Chem; 2024 Jul; 72(26):14912-14921. PubMed ID: 38913033 [TBL] [Abstract][Full Text] [Related]
8. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992 [TBL] [Abstract][Full Text] [Related]
9. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity. Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329 [TBL] [Abstract][Full Text] [Related]
10. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
11. Gene cloning, heterologous expression, and characterization of a high maltose-producing α-amylase of Rhizopus oryzae. Li S; Zuo Z; Niu D; Singh S; Permaul K; Prior BA; Shi G; Wang Z Appl Biochem Biotechnol; 2011 Jul; 164(5):581-92. PubMed ID: 21243443 [TBL] [Abstract][Full Text] [Related]
12. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127 [TBL] [Abstract][Full Text] [Related]
13. Improved thermostability of esterase from Aspergillus fumigatus by site-directed mutagenesis. Zhang S; Wu G; Feng S; Liu Z Enzyme Microb Technol; 2014 Oct; 64-65():11-6. PubMed ID: 25152411 [TBL] [Abstract][Full Text] [Related]
14. Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Deng Z; Yang H; Shin HD; Li J; Liu L Appl Microbiol Biotechnol; 2014 Nov; 98(21):8937-45. PubMed ID: 24816623 [TBL] [Abstract][Full Text] [Related]
15. Alteration of Chain-Length Selectivity and Thermostability of Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359 [No Abstract] [Full Text] [Related]
16. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591 [TBL] [Abstract][Full Text] [Related]
17. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica. Yang H; Liu L; Li J; Du G; Chen J Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus. Li Z; Duan X; Wu J J Biotechnol; 2016 Mar; 222():65-72. PubMed ID: 26869314 [TBL] [Abstract][Full Text] [Related]
19. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability. Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581 [TBL] [Abstract][Full Text] [Related]
20. Site-Directed Mutagenesis: Improving the Acid Resistance and Thermostability of Nie M; Khalid F; Hu Q; Khalid A; Wu Q; Huang S; Wang Z J Agric Food Chem; 2024 May; 72(18):10487-10496. PubMed ID: 38683727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]