These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32133771)

  • 1. Confined Bubble-Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess.
    Khezri B; Novotný F; Moo JGS; Nasir MZM; Pumera M
    Small; 2020 Jul; 16(27):e2000413. PubMed ID: 32133771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Behaviors of Isotropic Micromotors: From Assembly to Reconstruction and Motion Control under External Fields.
    Feng K; Chen L; Zhang X; Gong J; Qu J; Niu R
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circularly confined microswimmers exhibit multiple global patterns.
    Tsang AC; Kanso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043008. PubMed ID: 25974581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H
    Panda A; Reddy AS; Venkateswarlu S; Yoon M
    Nanoscale; 2018 Aug; 10(34):16268-16277. PubMed ID: 30128456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound.
    McNeill JM; Nama N; Braxton JM; Mallouk TE
    ACS Nano; 2020 Jun; 14(6):7520-7528. PubMed ID: 32432850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propelled autonomous nanomotors meet microfluidics.
    Kherzi B; Pumera M
    Nanoscale; 2016 Oct; 8(40):17415-17421. PubMed ID: 27714185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion.
    Wang H; Moo JG; Pumera M
    ACS Nano; 2016 May; 10(5):5041-50. PubMed ID: 27135613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond platinum: bubble-propelled micromotors based on Ag and MnO2 catalysts.
    Wang H; Zhao G; Pumera M
    J Am Chem Soc; 2014 Feb; 136(7):2719-22. PubMed ID: 24506544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment.
    Ren M; Guo W; Guo H; Ren X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22761-22767. PubMed ID: 31203603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors.
    Naeem S; Mujtaba J; Naeem F; Xu K; Huang G; Solovev AA; Zhang J; Mei Y
    RSC Adv; 2020 Oct; 10(60):36526-36530. PubMed ID: 35517949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromotor-based energy generation.
    Singh VV; Soto F; Kaufmann K; Wang J
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6896-9. PubMed ID: 25906739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review.
    Sharan P; Nsamela A; Lesher-Pérez SC; Simmchen J
    Small; 2021 Jul; 17(26):e2007403. PubMed ID: 33949106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants.
    Ma W; Wang K; Pan S; Wang H
    Langmuir; 2020 Jun; 36(25):6924-6929. PubMed ID: 31657933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal-Organic Frameworks for Enhanced Synergistic Environmental Remediation.
    Chen L; Zhang MJ; Zhang SY; Shi L; Yang YM; Liu Z; Ju XJ; Xie R; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35120-35131. PubMed ID: 32648440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radioactive Uranium Preconcentration
    Ying Y; Pourrahimi AM; Sofer Z; Matějková S; Pumera M
    ACS Nano; 2019 Oct; 13(10):11477-11487. PubMed ID: 31592633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective Entrainment and Confinement Amplify Transport by Schooling Microswimmers.
    Jin C; Chen Y; Maass CC; Mathijssen AJTM
    Phys Rev Lett; 2021 Aug; 127(8):088006. PubMed ID: 34477448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Bubble Evolution in the Bubble-Propelled Janus Micromotors.
    Chen G; Wang X; Zhang B; Zhang F; Wang Z; Zhang B; Li G
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.