These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32133801)
1. Identification of PTPRR and JAG1 as key genes in castration-resistant prostate cancer by integrated bioinformatics methods Wang JL; Wang Y; Ren GP J Zhejiang Univ Sci B; 2020 Mar.; 21(3):246-255. PubMed ID: 32133801 [TBL] [Abstract][Full Text] [Related]
2. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis. Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947 [TBL] [Abstract][Full Text] [Related]
3. GR silencing impedes the progression of castration-resistant prostate cancer through the JAG1/NOTCH2 pathway via up-regulation of microRNA-143-3p. Zhang L; Jiang H; Zhang Y; Wang C; Xia X; Sun Y Cancer Biomark; 2020; 28(4):483-497. PubMed ID: 32568179 [TBL] [Abstract][Full Text] [Related]
4. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036 [TBL] [Abstract][Full Text] [Related]
5. Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis. Wang Y; Wang J; Tang Q; Ren G PLoS One; 2021; 16(2):e0247827. PubMed ID: 33630978 [TBL] [Abstract][Full Text] [Related]
6. Identification of castration-resistant prostate cancer-related hub genes using weighted gene co-expression network analysis. Cheng Y; Li L; Qin Z; Li X; Qi F J Cell Mol Med; 2020 Jul; 24(14):8006-8017. PubMed ID: 32485038 [TBL] [Abstract][Full Text] [Related]
7. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms, immune cell infiltration, and potential drugs for prostate cancer. Yan Y; Mao X; Zhang Q; Ye Y; Dai Y; Bao M; Zeng Y; Huang R; Mo Z Cancer Biomark; 2021; 31(1):87-96. PubMed ID: 33780364 [TBL] [Abstract][Full Text] [Related]
9. Identification of genes associated with castration‑resistant prostate cancer by gene expression profile analysis. Huang CG; Li FX; Pan S; Xu CB; Dai JQ; Zhao XH Mol Med Rep; 2017 Nov; 16(5):6803-6813. PubMed ID: 28901445 [TBL] [Abstract][Full Text] [Related]
10. Gene expression profiling analysis of castration-resistant prostate cancer. Wang X; Wen J; Li R; Qiu G; Zhou L; Wen X Med Sci Monit; 2015 Jan; 21():205-12. PubMed ID: 25592164 [TBL] [Abstract][Full Text] [Related]
11. Identification of Core Genes and Potential Drugs for Castration-Resistant Prostate Cancer Based on Bioinformatics Analysis. Liang X; Hu K; Li D; Wang Y; Liu M; Wang X; Zhu W; Wang X; Yang Z; Lu J DNA Cell Biol; 2020 May; 39(5):836-847. PubMed ID: 32101033 [TBL] [Abstract][Full Text] [Related]
12. Identification of Potential Key Genes and Pathways in Enzalutamide-Resistant Prostate Cancer Cell Lines: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database. Zheng L; Dou X; Ma X; Qu W; Tang X Biomed Res Int; 2020; 2020():8341097. PubMed ID: 32724813 [TBL] [Abstract][Full Text] [Related]
13. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Yu C; Chen F; Jiang J; Zhang H; Zhou M Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of biomarkers and their functions for docetaxel-resistant prostate cancer cells. Deng L; Gu X; Zeng T; Xu F; Dong Z; Liu C; Chao H Oncol Lett; 2019 Sep; 18(3):3236-3248. PubMed ID: 31452801 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Guo T; Hou D; Yu D Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495 [TBL] [Abstract][Full Text] [Related]
16. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gastric cancer. Wu Q; Zhang B; Wang Z; Hu X; Sun Y; Xu R; Chen X; Wang Q; Ju F; Ren S; Zhang C; Qi F; Ma Q; Xue Q; Zhou YL Pathol Res Pract; 2019 May; 215(5):1038-1048. PubMed ID: 30975489 [TBL] [Abstract][Full Text] [Related]
17. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. Zheng MJ; Li X; Hu YX; Dong H; Gou R; Nie X; Liu Q; Ying-Ying H; Liu JJ; Lin B J Cell Physiol; 2019 Jul; 234(7):11023-11036. PubMed ID: 30633343 [TBL] [Abstract][Full Text] [Related]
18. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Xu Z; Jiang P; He S Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546 [TBL] [Abstract][Full Text] [Related]
19. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
20. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. Li J; Wang Y; Wang X; Yang Q World J Surg Oncol; 2020 Mar; 18(1):50. PubMed ID: 32127012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]