These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32133837)

  • 1. Enhancing Grain Growth for Efficient Solution-Processed (Cu,Ag)
    Qi Y; Liu Y; Kou D; Zhou W; Zhou Z; Tian Q; Yuan S; Meng Y; Wu S
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14213-14223. PubMed ID: 32133837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of Ag for Cu in Cu
    Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elemental Precursor Solution Processed (Cu
    Qi Y; Tian Q; Meng Y; Kou D; Zhou Z; Zhou W; Wu S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21243-21250. PubMed ID: 28586190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further Boosting Solar Cell Performance via Bandgap-Graded Ag Doping in Cu
    Zhou T; Huang J; Qian S; Wang X; Yang G; Yao B; Li Y; Jiang Y; Liu Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1073-1084. PubMed ID: 36534121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient (Cu
    Yu X; Cheng S; Yan Q; Yu J; Qiu W; Zhou Z; Zheng Q; Wu S
    RSC Adv; 2018 Aug; 8(49):27686-27694. PubMed ID: 35542725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping.
    Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO
    Gour KS; Pawar PS; Lee M; Karade VC; Yun JS; Heo J; Park J; Yun JH; Kim JH
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30010-30019. PubMed ID: 38814930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Performance of Aqueous Solution-Processed Cu
    He W; Sui Y; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32605150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping of Sb into Cu
    Zhao B; Deng Y; Cao L; Zhu J; Zhou Z
    Front Chem; 2022; 10():974761. PubMed ID: 36017168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 10.24% Efficiency of Flexible Cu
    Xie W; Sun Q; Yan Q; Wu J; Zhang C; Zheng Q; Lai Y; Deng H; Cheng S
    Small; 2022 Jun; 18(22):e2201347. PubMed ID: 35510960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significantly Improving the Crystal Growth of a Cu
    Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.
    Guo J; Pei Y; Zhou Z; Zhou W; Kou D; Wu S
    Nanoscale Res Lett; 2015 Dec; 10(1):1045. PubMed ID: 26293494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented Control of Selenization Environment for High-Quality Cu
    Jian Y; Han L; Kong X; Xie T; Kou D; Zhou W; Zhou Z; Yuan S; Meng Y; Qi Y; Liang G; Zhang X; Zheng Z; Wu S
    Small Methods; 2024 May; ():e2400041. PubMed ID: 38766987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells.
    Xiao ZY; Yao B; Li YF; Ding ZH; Gao ZM; Zhao HF; Zhang LG; Zhang ZZ; Sui YR; Wang G
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17334-42. PubMed ID: 27323648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passivating Grain Boundaries via Graphene Additive for Efficient Kesterite Solar Cells.
    Cao L; Zhou Z; Zhou W; Kou D; Meng Y; Yuan S; Qi Y; Han L; Tian Q; Wu S; Liu SF
    Small; 2024 Mar; 20(9):e2304866. PubMed ID: 37863810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a High-Quality Cu
    Zhao W; Yu F; Liu SF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):634-639. PubMed ID: 30560655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se)
    Kim B; Park GS; Kim JH; Park SY; Kim DS; Lee DK; Won DH; Kwon S; Kim DW; Kang Y; Jeong C; Min BK
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36082-36091. PubMed ID: 32664721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating Molecular Precursor Interactions with Device Performance in Solution-Processed Cu
    Agbenyeke R; Sheppard A; Keynon J; Benhaddou N; Fleck N; Corsetti V; Alkhalifah MA; Tiwari D; Bowers JW; Fermin DJ
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38935097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Process for Partial Ag Substitution in Kesterite Cu
    Gang MG; Karade VC; Suryawanshi MP; Yoo H; He M; Hao X; Lee IJ; Lee BH; Shin SW; Kim JH
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3959-3968. PubMed ID: 33463150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.