These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32133848)

  • 1. Enhancement of Signal-to-Noise Ratio for Serotonin Detection with Well-Designed Nanofilter-Coated Potentiometric Electrochemical Biosensor.
    Nishitani S; Sakata T
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14761-14769. PubMed ID: 32133848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric Nanofilter Biointerface for Potentiometric Small-Biomolecule Recognition.
    Nishitani S; Sakata T
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5561-5569. PubMed ID: 30644715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor.
    Kajisa T; Li W; Michinobu T; Sakata T
    Biosens Bioelectron; 2018 Oct; 117():810-817. PubMed ID: 30096735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly Imprinted Artificial Biointerface for an Enzyme-Free Glucose Transistor.
    Kajisa T; Sakata T
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34983-34990. PubMed ID: 30234958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer.
    Matsumoto A; Matsumoto H; Maeda Y; Miyahara Y
    Biochim Biophys Acta; 2013 Sep; 1830(9):4359-64. PubMed ID: 23500013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.
    Kajisa T; Yanagimoto Y; Saito A; Sakata T
    ACS Sens; 2018 Feb; 3(2):476-483. PubMed ID: 29359919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanoporous thin-film working electrodes and their biosensing applications.
    Li T; Jia F; Fan Y; Ding Z; Yang J
    Biosens Bioelectron; 2013 Apr; 42():5-11. PubMed ID: 23208085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Buffering Effects in Potentiometric Detection of DNA Using Thiol-Modified Gold Electrodes.
    Xu X; Yu Y; Hu Q; Chen S; Nyholm L; Zhang Z
    ACS Sens; 2021 Jul; 6(7):2546-2552. PubMed ID: 34184534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode.
    Ishige Y; Shimoda M; Kamahori M
    Biosens Bioelectron; 2009 Jan; 24(5):1096-102. PubMed ID: 18672358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors.
    Guan W; Duan X; Reed MA
    Biosens Bioelectron; 2014 Jan; 51():225-31. PubMed ID: 23968728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives.
    Anzai JI
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():737-746. PubMed ID: 27287174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.
    Guan W; Reed MA
    Methods Mol Biol; 2017; 1572():189-203. PubMed ID: 28299689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform.
    Ahangar LE; Mehrgardi MA
    Bioelectrochemistry; 2017 Oct; 117():83-88. PubMed ID: 28645004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer.
    Kim DM; Moon JM; Lee WC; Yoon JH; Choi CS; Shim YB
    Biosens Bioelectron; 2017 May; 91():276-283. PubMed ID: 28024285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe
    Amatatongchai M; Sitanurak J; Sroysee W; Sodanat S; Chairam S; Jarujamrus P; Nacapricha D; Lieberzeit PA
    Anal Chim Acta; 2019 Oct; 1077():255-265. PubMed ID: 31307717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid.
    Wang K; Wu C; Wang F; Liao M; Jiang G
    Biosens Bioelectron; 2020 Feb; 150():111869. PubMed ID: 31735624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid.
    Rezaei B; Shams-Ghahfarokhi L; Havakeshian E; Ensafi AA
    Talanta; 2016 Sep; 158():42-50. PubMed ID: 27343576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Photo-Electrochemical Transistor-Based Biosensor: A Proof-of-Concept Study toward Highly Sensitive DNA Detection.
    Song J; Lin P; Ruan YF; Zhao WW; Wei W; Hu J; Ke S; Zeng X; Xu JJ; Chen HY; Ren W; Yan F
    Adv Healthc Mater; 2018 Oct; 7(19):e1800536. PubMed ID: 30117317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles.
    Yuan H; Ji W; Chu S; Qian S; Wang F; Masson JF; Han X; Peng W
    Biosens Bioelectron; 2018 Oct; 117():637-643. PubMed ID: 30005384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.