These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3213404)

  • 41. Elastic fibre and hyaluronic acid in the core of human palatal rugae.
    Thomas CJ; Van Wyk CW
    J Biol Buccale; 1987 Sep; 15(3):171-4. PubMed ID: 2457015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monoclonal antibodies recognising stage and region specific epitopes in embryonic mouse palatal epithelial cells.
    Dixon MJ; Robinson V; White A; Ferguson MW
    J Anat; 1993 Oct; 183 ( Pt 2)(Pt 2):423-38. PubMed ID: 7507912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differentiation of cultured palatal shelves from alligator, chick, and mouse embryos.
    Ferguson MW; Honig LS; Slavkin HC
    Anat Rec; 1984 Jun; 209(2):231-49. PubMed ID: 6465533
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A biochemical study of glycosaminoglycans in the palatal rugae of the monkey (Macaca fascicularis).
    Okazaki J; Gonda Y; Nishiura M
    Arch Oral Biol; 1989; 34(7):585-6. PubMed ID: 2597049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of anti-inflammatory steroids on mouse embryonic movements during palatal development.
    Walker BE; Quarles J
    J Dent Res; 1975; 54(6):1200-6. PubMed ID: 1059659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W; Gu S; Sun C; He W; Xie X; Li X; Ye W; Qin C; Chen Y; Xiao J; Liu C
    PLoS One; 2015; 10(9):e0136951. PubMed ID: 26332583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An extracellular matrix infrastructure provides support for murine secondary palatal shelf remodelling.
    Morris-Wiman J; Brinkley L
    Anat Rec; 1992 Dec; 234(4):575-86. PubMed ID: 1280922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular and morphologic changes during the epithelial-mesenchymal transformation of palatal shelf medial edge epithelium in vitro.
    Shuler CF; Guo Y; Majumder A; Luo RY
    Int J Dev Biol; 1991 Dec; 35(4):463-72. PubMed ID: 1801871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tbx1 is necessary for palatal elongation and elevation.
    Goudy S; Law A; Sanchez G; Baldwin HS; Brown C
    Mech Dev; 2010; 127(5-6):292-300. PubMed ID: 20214979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Comparative morphometrical study on development of palatal shelves in cleft and non-cleft palate mice].
    Cai ZG; von Domarus H; Engel E
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 May; 38(3):182-4. PubMed ID: 12887793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cortisone-induced cleft palate in A/J mice: failure of palatal shelf contact.
    Diewert VM; Pratt RM
    Teratology; 1981 Oct; 24(2):149-62. PubMed ID: 7336358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study of craniofacial growth during secondary palate development in four strains of mice.
    Diewert VM
    J Craniofac Genet Dev Biol; 1982; 2(4):247-63. PubMed ID: 7183704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms.
    Economou AD; Brock LJ; Cobourne MT; Green JB
    Development; 2013 Dec; 140(23):4740-50. PubMed ID: 24173805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunohistochemical localization of TGF-beta type II receptor and TGF-beta3 during palatogenesis in vivo and in vitro.
    Cui XM; Warburton D; Zhao J; Crowe DL; Shuler CF
    Int J Dev Biol; 1998 Sep; 42(6):817-20. PubMed ID: 9727838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forensic Application of Palatal Rugae in Dental Identification.
    Wazir SS; Arora P; Srivastava R; Rastogi S
    JNMA J Nepal Med Assoc; 2015; 53(199):151-5. PubMed ID: 27549495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation.
    Yu K; Karuppaiah K; Ornitz DM
    Dev Dyn; 2015 Nov; 244(11):1427-38. PubMed ID: 26250517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphological changes in palatal rugae patterns following orthodontic treatment.
    Mustafa AG; Allouh MZ; Alshehab RM
    J Forensic Leg Med; 2015 Apr; 31():19-22. PubMed ID: 25735779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.