BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32134112)

  • 1. Postnatal development of the entorhinal cortex: A stereological study in macaque monkeys.
    Piguet O; J Chareyron L; Banta Lavenex P; G Amaral D; Lavenex P
    J Comp Neurol; 2020 Oct; 528(14):2308-2332. PubMed ID: 32134112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereological analysis of the rhesus monkey entorhinal cortex.
    Piguet O; Chareyron LJ; Banta Lavenex P; Amaral DG; Lavenex P
    J Comp Neurol; 2018 Sep; 526(13):2115-2132. PubMed ID: 30004581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human entorhinal cortex: a cytoarchitectonic analysis.
    Insausti R; Tuñón T; Sobreviela T; Insausti AM; Gonzalo LM
    J Comp Neurol; 1995 May; 355(2):171-98. PubMed ID: 7541808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of the hippocampal formation: a stereological study in macaque monkeys.
    Jabès A; Lavenex PB; Amaral DG; Lavenex P
    J Comp Neurol; 2011 Apr; 519(6):1051-70. PubMed ID: 21344402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and overlap of entorhinal, premotor, and amygdalar connections in the monkey anterior cingulate cortex.
    Calderazzo SM; Busch SE; Moore TL; Rosene DL; Medalla M
    J Comp Neurol; 2021 Mar; 529(4):885-904. PubMed ID: 32677044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural plasticity in the entorhinal and perirhinal cortices following hippocampal lesions in rhesus monkeys.
    Villard J; Chareyron LJ; Piguet O; Lambercy P; Lonchampt G; Banta Lavenex P; Amaral DG; Lavenex P
    Hippocampus; 2023 Oct; 33(10):1094-1112. PubMed ID: 37337377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building hippocampal circuits to learn and remember: insights into the development of human memory.
    Lavenex P; Banta Lavenex P
    Behav Brain Res; 2013 Oct; 254():8-21. PubMed ID: 23428745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates.
    Merrill DA; Roberts JA; Tuszynski MH
    J Comp Neurol; 2000 Jul; 422(3):396-401. PubMed ID: 10861515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entorhinal cortex of the monkey: VII. intrinsic connections.
    Chrobak JJ; Amaral DG
    J Comp Neurol; 2007 Feb; 500(4):612-33. PubMed ID: 17154267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners.
    Wang C; Lee H; Rao G; Doreswamy Y; Savelli F; Knierim JJ
    Hippocampus; 2023 May; 33(5):448-464. PubMed ID: 36965194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal development of the human entorhinal cortex.
    Šimić G; Krsnik Ž; Knezović V; Kelović Z; Mathiasen ML; Junaković A; Radoš M; Mulc D; Španić E; Quattrocolo G; Hall VJ; Zaborszky L; Vukšić M; Olucha Bordonau F; Kostović I; Witter MP; Hof PR
    J Comp Neurol; 2022 Oct; 530(15):2711-2748. PubMed ID: 35603771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys.
    Chareyron LJ; Banta Lavenex P; Amaral DG; Lavenex P
    Brain Struct Funct; 2017 Dec; 222(9):3899-3914. PubMed ID: 28488186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey.
    Amaral DG; Kondo H; Lavenex P
    J Comp Neurol; 2014 May; 522(7):1485-505. PubMed ID: 24122645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar Organization of the Entorhinal Cortex in Macaque Monkeys Based on Cell-Type-Specific Markers and Connectivity.
    Ohara S; Yoshino R; Kimura K; Kawamura T; Tanabe S; Zheng A; Nakamura S; Inoue KI; Takada M; Tsutsui KI; Witter MP
    Front Neural Circuits; 2021; 15():790116. PubMed ID: 34949991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
    Meister MLR; Buffalo EA
    J Neurosci; 2018 Mar; 38(10):2430-2441. PubMed ID: 29386260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys.
    Buckmaster PS; Alonso A; Canfield DR; Amaral DG
    J Comp Neurol; 2004 Mar; 470(3):317-29. PubMed ID: 14755519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey.
    Pitkänen A; Kelly JL; Amaral DG
    Hippocampus; 2002; 12(2):186-205. PubMed ID: 12000118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex.
    Grateron L; Cebada-Sanchez S; Marcos P; Mohedano-Moriano A; Insausti AM; Muñoz M; Arroyo-Jimenez MM; Martinez-Marcos A; Artacho-Perula E; Blaizot X; Insausti R
    J Chem Neuroanat; 2003 Dec; 26(4):311-6. PubMed ID: 14729133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdivision-specific expression of ZIF268 in the hippocampal formation of the macaque monkey.
    Okuno H; Saffen DW; Miyashita Y
    Neuroscience; 1995 Jun; 66(4):829-45. PubMed ID: 7651612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex.
    Olsen LC; O'Reilly KC; Liabakk NB; Witter MP; Sætrom P
    Brain Struct Funct; 2017 Sep; 222(7):3107-3126. PubMed ID: 28260163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.