These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32134246)

  • 1. Mechanical Response of Nanocrystalline Ice-Contained Methane Hydrates: Key Role of Water Ice.
    Cao P; Ning F; Wu J; Cao B; Li T; Sveinsson HA; Liu Z; Vlugt TJH; Hyodo M
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14016-14028. PubMed ID: 32134246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical instability of monocrystalline and polycrystalline methane hydrates.
    Wu J; Ning F; Trinh TT; Kjelstrup S; Vlugt TJH; He J; Skallerud BH; Zhang Z
    Nat Commun; 2015 Nov; 6():8743. PubMed ID: 26522051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HTR+: a novel algorithm for identifying type and polycrystal of gas hydrates.
    Shi Q; Lin Z; Qu Y; Wu J; Zhang Z
    J Phys Condens Matter; 2024 Jun; 36(36):. PubMed ID: 38821075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical creep instability of nanocrystalline methane hydrates.
    Cao P; Sheng J; Wu J; Ning F
    Phys Chem Chem Phys; 2021 Feb; 23(5):3615-3626. PubMed ID: 33524096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Instability of Methane Hydrate-Mineral Interface Systems.
    Cao P; Li T; Ning F; Wu J
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46043-46054. PubMed ID: 34520161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of amorphous CO
    Cao P; Wu J; Ning F
    Phys Chem Chem Phys; 2024 Mar; 26(12):9388-9398. PubMed ID: 38444360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Diagram of Methane Hydrates and Discovery of MH-VI Hydrate.
    Huang Y; Li K; Jiang X; Su Y; Cao X; Zhao J
    J Phys Chem A; 2018 Jul; 122(28):6007-6013. PubMed ID: 29965764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanical stability of tetrahydrofuran hydrates from experimental, machine learning, and molecular dynamics perspectives.
    Lin Y; Zhou Z; Song Z; Shi Q; Hao Y; Fu Y; Li T; Zhang Z; Wu J
    Nanoscale; 2024 Mar; 16(12):6296-6308. PubMed ID: 38463012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
    Zhang Z; Guo GJ
    Phys Chem Chem Phys; 2017 Jul; 19(29):19496-19505. PubMed ID: 28719672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a Low-Density Liquid Phase during the Dissociation of Gas Hydrates in Confined Environments.
    Wan L; Zang X; Fu J; Zhou X; Lu J; Guan J; Liang D
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33652869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy].
    Liu CL; Ye YG; Meng QG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):963-6. PubMed ID: 20545140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation kinetics of propane-methane and butane-methane hydrates below the melting point of ice.
    Takeya S; Hachikubo A
    Phys Chem Chem Phys; 2021 Jul; 23(28):15003-15009. PubMed ID: 34047316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Atom Molecular Dynamics of Pure Water-Methane Gas Hydrate Systems under Pre-Nucleation Conditions: A Direct Comparison between Experiments and Simulations of Transport Properties for the Tip4p/Ice Water Model.
    Guerra A; Mathews S; Marić M; Servio P; Rey AD
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter.
    Lee S; Lee Y; Lee J; Lee H; Seo Y
    Environ Sci Technol; 2013 Nov; 47(22):13184-90. PubMed ID: 24175633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic Molecular Insights into Hydrate Formation and Growth in Pure and Saline Water Environments.
    Thakre N; Palodkar AV; Dongre HJ; Jana AK
    J Phys Chem A; 2020 May; 124(21):4241-4252. PubMed ID: 32368914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations.
    Waage MH; Vlugt TJH; Kjelstrup S
    J Phys Chem B; 2017 Aug; 121(30):7336-7350. PubMed ID: 28682631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover.
    Granin NG; Aslamov IA; Kozlov VV; Makarov MM; Kirillin G; McGinnis DF; Kucher KM; Blinov VV; Ivanov VG; Mizandrontsev IB; Zhdanov AA; Anikin AS; Granin MN; Gnatovsky RY
    Sci Rep; 2019 Dec; 9(1):19361. PubMed ID: 31852934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation behavior of C2H6 hydrate at temperatures below the ice point: melting to liquid water followed by ice nucleation.
    Ohno H; Oyabu I; Iizuka Y; Hondoh T; Narita H; Nagao J
    J Phys Chem A; 2011 Aug; 115(32):8889-94. PubMed ID: 21744826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.
    Nguyen AH; Molinero V
    J Phys Chem B; 2015 Jul; 119(29):9369-76. PubMed ID: 25389702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.