These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32134249)

  • 1. Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays.
    Jeon J; Park JE; Park SJ; Won S; Zhao H; Kim S; Shim BS; Urbas A; Hart AJ; Ku Z; Wie JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17113-17120. PubMed ID: 32134249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Magneto-Mechanical Actuation of Micropillar Arrays by Anisotropic Stress Distribution.
    Park JE; Jeon J; Park SJ; Won S; Ku Z; Wie JJ
    Small; 2020 Sep; 16(38):e2003179. PubMed ID: 32794323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Magnetic Micropillar Arrays for Programmable Actuation.
    Wang Z; Wang K; Liang D; Yan L; Ni K; Huang H; Li B; Guo Z; Wang J; Ma X; Tang X; Chen LQ
    Adv Mater; 2020 Jun; 32(25):e2001879. PubMed ID: 32406075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Stepwise Collective Magnetic Self-Assembly of Micropillar Arrays.
    Park JE; Park SJ; Urbas A; Ku Z; Wie JJ
    ACS Nano; 2022 Feb; 16(2):3152-3162. PubMed ID: 35099934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Dynamic Chirality Selection in Flower Corolla-like Micropillar Arrays.
    Park JE; Jeon J; Park SJ; Won S; Ku Z; Wie JJ
    ACS Nano; 2022 Nov; 16(11):18101-18109. PubMed ID: 36282603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.
    Schmauch MM; Mishra SR; Evans BA; Velev OD; Tracy JB
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11895-11901. PubMed ID: 28349697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programming Deformations of 3D Microstructures: Opportunities Enabled by Magnetic Alignment of Liquid Crystalline Elastomers.
    Li S; Aizenberg M; Lerch MM; Aizenberg J
    Acc Mater Res; 2023 Dec; 4(12):1008-1019. PubMed ID: 38148997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Magnetic Micropillars for Reprogrammable Actuation.
    Ni K; Peng Q; Gao E; Wang K; Shao Q; Huang H; Xue L; Wang Z
    ACS Nano; 2021 Mar; 15(3):4747-4758. PubMed ID: 33617237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and Reversible Adhesive of Liquid Metal Ferrofluid Pillars for Magnetically Actuated Noncontact Transfer Printing.
    Jiang J; Li C; Chen C; Shi C; Song J
    Adv Mater; 2024 Jul; 36(29):e2314004. PubMed ID: 38760018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable directional deformation of micro-pillars actuated by a magnetic field.
    Chai Z; Liu M; Chen L; Peng Z; Chen S
    Soft Matter; 2019 Nov; 15(43):8879-8885. PubMed ID: 31616887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetism-Responsive Anisotropic Film with Self-Sensing and Multifunctional Shape Manipulation.
    Ding L; Zhang J; Shu Q; Liu S; Xuan S; Gong X; Zhang D
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13724-13734. PubMed ID: 33689273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Periodic Magnetic Nanostructures with High Aspect Ratio and Ultrahigh Pillar Density.
    Luo Z; Zhang XA; Evans BA; Chang CH
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11135-11143. PubMed ID: 32017524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printing ferromagnetic domains for untethered fast-transforming soft materials.
    Kim Y; Yuk H; Zhao R; Chester SA; Zhao X
    Nature; 2018 Jun; 558(7709):274-279. PubMed ID: 29899476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically actuated microstructured surfaces can actively modify cell migration behaviour.
    Khademolhosseini F; Liu CC; Lim CJ; Chiao M
    Biomed Microdevices; 2016 Feb; 18(1):13. PubMed ID: 26825323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking.
    Lee J; Guo Y; Choi YJ; Jung S; Seol D; Choi S; Kim JH; Kim Y; Jeong KU; Ahn SK
    Soft Matter; 2020 Mar; 16(11):2695-2705. PubMed ID: 32057062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable origami robotic arm with omnidirectional bending and twisting.
    Wu S; Ze Q; Dai J; Udipi N; Paulino GH; Zhao R
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34462360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators.
    Hajiesmaili E; Larson NM; Lewis JA; Clarke DR
    Sci Adv; 2022 Jul; 8(28):eabn9198. PubMed ID: 35857528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Cytoskeletal Mechanical Fluctuations and Rheology with Active Micropost Arrays.
    Shi Y; Sivarajan S; Crocker JC; Reich DH
    Curr Protoc; 2022 May; 2(5):e433. PubMed ID: 35612274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation.
    Ze Q; Kuang X; Wu S; Wong J; Montgomery SM; Zhang R; Kovitz JM; Yang F; Qi HJ; Zhao R
    Adv Mater; 2020 Jan; 32(4):e1906657. PubMed ID: 31814185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.