These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32134275)

  • 1. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Fabry-Pérot nanocavity.
    Sorger VJ; Oulton RF; Yao J; Bartal G; Zhang X
    Nano Lett; 2009 Oct; 9(10):3489-93. PubMed ID: 19673532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wedge Waveguides and Resonators for Quantum Plasmonics.
    Kress SJ; Antolinez FV; Richner P; Jayanti SV; Kim DK; Prins F; Riedinger A; Fischer MP; Meyer S; McPeak KM; Poulikakos D; Norris DJ
    Nano Lett; 2015 Sep; 15(9):6267-75. PubMed ID: 26284499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips.
    Böckmann H; Liu S; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Jun; 19(6):3597-3602. PubMed ID: 31070928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Control of Nanocavities with Tunable Metal Oxides.
    Kim J; Carnemolla EG; DeVault C; Shaltout AM; Faccio D; Shalaev VM; Kildishev AV; Ferrera M; Boltasseva A
    Nano Lett; 2018 Feb; 18(2):740-746. PubMed ID: 29283583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes.
    Chiu KC; Falk AL; Ho PH; Farmer DB; Tulevski G; Lee YH; Avouris P; Han SJ
    Nano Lett; 2017 Sep; 17(9):5641-5645. PubMed ID: 28763225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures.
    Wang S; Yoo S; Zhao S; Zhao W; Kahn S; Cui D; Wu F; Jiang L; Utama MIB; Li H; Li S; Zibrov A; Regan E; Wang D; Zhang Z; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nat Commun; 2021 Aug; 12(1):5039. PubMed ID: 34413291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
    Konrad A; Kern AM; Brecht M; Meixner AJ
    Nano Lett; 2015 Jul; 15(7):4423-8. PubMed ID: 26061892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.
    Fan JR; Wu WG; Chen ZJ; Zhu J; Li J
    Nanoscale; 2017 Mar; 9(10):3416-3423. PubMed ID: 28009895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid photonic-plasmonic crystal nanocavities.
    Yang X; Ishikawa A; Yin X; Zhang X
    ACS Nano; 2011 Apr; 5(4):2831-8. PubMed ID: 21384850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.