These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32134275)

  • 21. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabry-Perot Cavity Control for Tunable Raman Scattering.
    Kim T; Lee J; Yu ES; Lee S; Woo H; Kwak J; Chung S; Choi I; Ryu YS
    Small; 2023 Jul; 19(29):e2207003. PubMed ID: 37017491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Randomly Distributed Fabry-Pérot-type Metal Nanowire Resonators and Their Lasing Action.
    Kwon K; Jung Y; Kim M; Shim J; Yu K
    Sci Rep; 2016 Apr; 6():24898. PubMed ID: 27102220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Landau-damping-induced limits to light-matter interactions in sub-10-nm planar plasmonic nanocavities.
    Assumpcao DR; Siddique RH; Choo H
    Opt Express; 2021 Nov; 29(24):39801-39810. PubMed ID: 34809336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in nanocavities and their applications.
    Hwang MS; Choi JH; Jeong KY; Kim KH; Kim HR; So JP; Lee HC; Kim J; Kwon SH; Park HG
    Chem Commun (Camb); 2021 May; 57(40):4875-4885. PubMed ID: 33881425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS.
    Xomalis A; Zheng X; Demetriadou A; Martínez A; Chikkaraddy R; Baumberg JJ
    Nano Lett; 2021 Mar; 21(6):2512-2518. PubMed ID: 33705151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of high Q-factor metallic nanocavities using plasmonic bandgaps.
    Ee HS; Park HG; Kim SK
    Appl Opt; 2016 Feb; 55(5):1029-33. PubMed ID: 26906371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periodic planar Fabry-Perot nanocavities with tunable interference colors based on filling density effects.
    Yang Z; Wang Y; Zhu X; Chen Y; Zhang S; Li P; Duan H
    Appl Opt; 2021 Jan; 60(3):551-557. PubMed ID: 33690428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities.
    Katzen JM; Tserkezis C; Cai Q; Li LH; Kim JM; Lee G; Yi GR; Hendren WR; Santos EJG; Bowman RM; Huang F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19866-19873. PubMed ID: 32267669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoimaging of Low-Loss Plasmonic Waveguide Modes in a Graphene Nanoribbon.
    Zhao W; Li H; Xiao X; Jiang Y; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nano Lett; 2021 Apr; 21(7):3106-3111. PubMed ID: 33728921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit.
    Bahramipanah M; Dutta-Gupta S; Abasahl B; Martin OJ
    ACS Nano; 2015 Jul; 9(7):7621-33. PubMed ID: 26131684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature.
    Wang S; Li S; Chervy T; Shalabney A; Azzini S; Orgiu E; Hutchison JA; Genet C; Samorì P; Ebbesen TW
    Nano Lett; 2016 Jul; 16(7):4368-74. PubMed ID: 27266674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong coupling between plasmonic Fabry-Pérot cavity mode and magnetic plasmon.
    Xi Z; Lu Y; Yu W; Yao P; Wang P; Ming H
    Opt Lett; 2013 May; 38(10):1591-3. PubMed ID: 23938879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodical 2D Photonic-Plasmonic Au/TiO
    Fu B; Zhang Z
    Small; 2018 May; 14(20):e1703610. PubMed ID: 29665208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomically Smooth Single-Crystalline Platform for Low-Loss Plasmonic Nanocavities.
    Liu L; Krasavin AV; Zheng J; Tong Y; Wang P; Wu X; Hecht B; Pan C; Li J; Li L; Guo X; Zayats AV; Tong L
    Nano Lett; 2022 Feb; 22(4):1786-1794. PubMed ID: 35129980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.