These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32134315)

  • 1. One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.
    Goretzko D; Bühner M
    Psychol Methods; 2020 Dec; 25(6):776-786. PubMed ID: 32134315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target rotation with both factor loadings and factor correlations.
    Zhang G; Hattori M; Trichtinger LA; Wang X
    Psychol Methods; 2019 Jun; 24(3):390-402. PubMed ID: 30299117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor Retention Using Machine Learning With Ordinal Data.
    Goretzko D; Bühner M
    Appl Psychol Meas; 2022 Jul; 46(5):406-421. PubMed ID: 35812814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions.
    Auerswald M; Moshagen M
    Psychol Methods; 2019 Aug; 24(4):468-491. PubMed ID: 30667242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconsidering the Conditions for Conducting Confirmatory Factor Analysis.
    Ondé D; Alvarado JM
    Span J Psychol; 2020 Dec; 23():e55. PubMed ID: 33272349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial.
    Golino H; Shi D; Christensen AP; Garrido LE; Nieto MD; Sadana R; Thiyagarajan JA; Martinez-Molina A
    Psychol Methods; 2020 Jun; 25(3):292-320. PubMed ID: 32191105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel analysis with categorical variables: Impact of category probability proportions on dimensionality assessment accuracy.
    Lubbe D
    Psychol Methods; 2019 Jun; 24(3):339-351. PubMed ID: 29745684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factor retention in ordered categorical variables: Benefits and costs of polychoric correlations in eigenvalue-based testing.
    Brandenburg N
    Behav Res Methods; 2024 Oct; 56(7):7241-7260. PubMed ID: 38710985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The measurement of the mediator and its influence on statistical mediation conclusions.
    Gonzalez O; MacKinnon DP
    Psychol Methods; 2021 Feb; 26(1):1-17. PubMed ID: 32175754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comparison data forest: A new comparison data approach to determine the number of factors in exploratory factor analysis.
    Goretzko D; Ruscio J
    Behav Res Methods; 2024 Mar; 56(3):1838-1851. PubMed ID: 37382813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of innovative methods to determine the number of factors: A simulation-based comparison of exploratory graph analysis and next eigenvalue sufficiency test.
    Brandenburg N; Papenberg M
    Psychol Methods; 2024 Feb; 29(1):21-47. PubMed ID: 35925729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrected goodness-of-fit test in covariance structure analysis.
    Hayakawa K
    Psychol Methods; 2019 Jun; 24(3):371-389. PubMed ID: 29771549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Probability-Based Models Ranking Approach: An Alternative Method of Machine-Learning Model Performance Assessment.
    Gajda S; Chlebus M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting.
    Mayr A; Hofner B; Schmid M
    Methods Inf Med; 2012; 51(2):178-86. PubMed ID: 22344292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development.
    Chapman BP; Weiss A; Duberstein PR
    Psychol Methods; 2016 Dec; 21(4):603-620. PubMed ID: 27454257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of boosting algorithms. From machine learning to statistical modelling.
    Mayr A; Binder H; Gefeller O; Schmid M
    Methods Inf Med; 2014; 53(6):419-27. PubMed ID: 25112367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tutorial on regularized partial correlation networks.
    Epskamp S; Fried EI
    Psychol Methods; 2018 Dec; 23(4):617-634. PubMed ID: 29595293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches.
    Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD
    J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic prediction of psychological treatment outcomes: development and validation of a prediction model using routinely collected symptom data.
    Bone C; Simmonds-Buckley M; Thwaites R; Sandford D; Merzhvynska M; Rubel J; Deisenhofer AK; Lutz W; Delgadillo J
    Lancet Digit Health; 2021 Apr; 3(4):e231-e240. PubMed ID: 33766287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovering bifactor models: A comparison of seven methods.
    Giordano C; Waller NG
    Psychol Methods; 2020 Apr; 25(2):143-156. PubMed ID: 31343194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.