These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32134537)

  • 1. Bioinspired and Mechanically Strong Fibers Based on Engineered Non-Spider Chimeric Proteins.
    Li Y; Li J; Sun J; He H; Li B; Ma C; Liu K; Zhang H
    Angew Chem Int Ed Engl; 2020 May; 59(21):8148-8152. PubMed ID: 32134537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique.
    He H; Yang C; Wang F; Wei Z; Shen J; Chen D; Fan C; Zhang H; Liu K
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4344-4348. PubMed ID: 31873970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization and mechanical properties of chimeric Masp1/Flag minispidroins.
    Xu S; Li X; Zhou Y; Lin Y; Meng Q
    Biochimie; 2020 Jan; 168():251-258. PubMed ID: 31783091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.
    Muiznieks LD; Keeley FW
    Biopolymers; 2016 Oct; 105(10):693-703. PubMed ID: 27272259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks.
    Lin S; Chen G; Liu X; Meng Q
    Biopolymers; 2016 Jul; 105(7):385-92. PubMed ID: 26948769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.
    Qiu W; Teng W; Cappello J; Wu X
    Biomacromolecules; 2009 Mar; 10(3):602-8. PubMed ID: 19186950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide.
    Bracalello A; Santopietro V; Vassalli M; Marletta G; Del Gaudio R; Bochicchio B; Pepe A
    Biomacromolecules; 2011 Aug; 12(8):2957-65. PubMed ID: 21707089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk.
    Bowen CH; Dai B; Sargent CJ; Bai W; Ladiwala P; Feng H; Huang W; Kaplan DL; Galazka JM; Zhang F
    Biomacromolecules; 2018 Sep; 19(9):3853-3860. PubMed ID: 30080972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and Properties of Triple Chimeric Spidroins.
    Zhou Y; Rising A; Johansson J; Meng Q
    Biomacromolecules; 2018 Jul; 19(7):2825-2833. PubMed ID: 29669211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant silk-elastinlike protein polymer displays elasticity comparable to elastin.
    Teng W; Cappello J; Wu X
    Biomacromolecules; 2009 Nov; 10(11):3028-36. PubMed ID: 19788307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains.
    Zhu H; Rising A; Johansson J; Zhang X; Lin Y; Zhang L; Yi T; Mi J; Meng Q
    Int J Biol Macromol; 2020 Jul; 154():765-772. PubMed ID: 32169447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair.
    Su J; Liu B; He H; Ma C; Wei B; Li M; Li J; Wang F; Sun J; Liu K; Zhang H
    Adv Mater; 2022 May; 34(19):e2200842. PubMed ID: 35262209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastin-like polypeptides: biomedical applications of tunable biopolymers.
    MacEwan SR; Chilkoti A
    Biopolymers; 2010; 94(1):60-77. PubMed ID: 20091871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Spider-Silk-Like Supertough Fibers using a Pseudoprotein Polymer.
    Gu L; Jiang Y; Hu J
    Adv Mater; 2019 Nov; 31(48):e1904311. PubMed ID: 31490597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Highly Soluble Chimeric Recombinant Spidroins with High Yield.
    Jia Q; Wen R; Meng Q
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application.
    Zhang J; Sun J; Li B; Yang C; Shen J; Wang N; Gu R; Wang D; Chen D; Hu H; Fan C; Zhang H; Liu K
    Small; 2020 Feb; 16(8):e1907598. PubMed ID: 32003943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial fibrous proteins: a review.
    Heslot H
    Biochimie; 1998 Jan; 80(1):19-31. PubMed ID: 9587659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.