These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32134557)

  • 1. Hydro(deoxygenation) Reaction Network of Lignocellulosic Oxygenates.
    Dutta S
    ChemSusChem; 2020 Jun; 13(11):2894-2915. PubMed ID: 32134557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydro-deoxygenation at atmospheric pressure converts the phenolic-rich pyrolysis liquid fraction into aromatics.
    Guo X; Zhang H; Fang Y
    J Environ Manage; 2022 Mar; 306():114429. PubMed ID: 35007791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts.
    Ren H; Yu W; Salciccioli M; Chen Y; Huang Y; Xiong K; Vlachos DG; Chen JG
    ChemSusChem; 2013 May; 6(5):798-801. PubMed ID: 23559531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Scaling Relationships for Furan Hydrodeoxygenation over Transition Metal and Bimetallic Surfaces.
    Kanchan DR; Banerjee A
    ChemSusChem; 2023 Sep; 16(18):e202300491. PubMed ID: 37314827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations.
    Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y
    ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacancy Engineering in Transition Metal Sulfide and Oxide Catalysts for Hydrodeoxygenation of Lignin-Derived Oxygenates.
    Jiang S; Ji N; Diao X; Li H; Rong Y; Lei Y; Yu Z
    ChemSusChem; 2021 Oct; 14(20):4377-4396. PubMed ID: 34342394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review.
    Shomal R; Zheng Y
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al
    Ameen M; Azizan MT; Ramli A; Yusup S; Alnarabiji MS
    Ultrason Sonochem; 2019 Mar; 51():90-102. PubMed ID: 30514489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.
    Sun S; Yang R; Wang X; Yan S
    Data Brief; 2018 Apr; 17():638-646. PubMed ID: 29552613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading.
    Geng Y; Li H
    ChemSusChem; 2022 Apr; 15(8):e202102495. PubMed ID: 35230748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Catalytic Selectivity via Adsorbate Orientation on the Surface: From Furfural Deoxygenation to Reactions of Epoxides.
    Pang SH; Medlin JW
    J Phys Chem Lett; 2015 Apr; 6(8):1348-56. PubMed ID: 26263134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts.
    Kwon EE; Kim YT; Kim HJ; Andrew Lin KY; Kim KH; Lee J; Huber GW
    J Environ Manage; 2018 Dec; 227():329-334. PubMed ID: 30199729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of thermal homogeneous catalytic deoxygenation reactions for valuable products.
    Kong Z; He L; Shi Y; Guan Q; Ning P
    Heliyon; 2020 Feb; 6(2):e03446. PubMed ID: 32123767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.
    Anderson E; Crisci A; Murugappan K; Román-Leshkov Y
    ChemSusChem; 2017 May; 10(10):2226-2234. PubMed ID: 28371565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran.
    Xiong K; Lee WS; Bhan A; Chen JG
    ChemSusChem; 2014 Aug; 7(8):2146-9. PubMed ID: 24757086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Ring-Opening of Biomass-Derived Furanics over Carbon-Supported Ruthenium.
    Gilkey MJ; Mironenko AV; Yang L; Vlachos DG; Xu B
    ChemSusChem; 2016 Nov; 9(21):3113-3121. PubMed ID: 27739655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
    Xu X; Zhang C; Liu Y; Zhai Y; Zhang R
    Chemosphere; 2013 Oct; 93(4):652-60. PubMed ID: 23876507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.